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PREFACE

This book deals with the fundamental principles of hydraulics

and their application in engineering practice. Though many-

formulas applicable to different types of problems are given, it

has been the aim of the authors to bring out clearly and logically

the underlying principles which form the basis of such formulas

rather than to emphasize the importance of the formulas them-

selves.

Our present knowledge of fluid friction has been derived

largely through experimental investigation and this has resulted

in the development of a large number of empirical formulas.

Many of these formulas have necessarily been included but,

in so far as possible, the base formulas to which empirical coeffi-

cients have been appHed have been derived analytically from

fundamental consideration of basic principles.

The book is designed as a text for beginning courses in

hydraulics and as a reference book for engineers who may be

interested in the fundamental principles of the subject. Tables

of coefficients are given which are sufficiently complete for class-

room work, but the engineer in practice will need to supplement

them with the results of his own experience and with data obtained

from other published sources.

Chapters I to VI inclusive and Chapter XI were written by
Professor Wisler and Chapters VII to X inclusive were written

by Professor King. Acknowldgement for material taken from

many publications is made at the proper place in the text.

H. W. K.

C. 0. W.
Universily of Michigan,

April, 1922.
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HYDRAULICS

CHAPTER I

ERRATA

Page 31," middle of page "4F =4x62.4," etc., f should be f

.

Page 42, line 4 should read "the sign in the last expression being

positive if G falls below -B„ and negative if above."

Page 47, line 13, strike out the word "static."

Page 47, line 15, pt should be pi,.

Page 106.—In equation at bottom of page, lower limit of integral

is o.

Page 170.—Equations 54 and 55, quantity (i +F) should be

Page 212.—Insert "constant" before "force" in line 4; also in

line below equation (4) and in line below equation (5).

hydrodynamics, which relates to the forces exerted upon other

objects by liquids in motion or upon liquids by other objects in

motion.

The fundamental laws of hydraulics apply equally to all

liquids, but in hydrokinetics empirical coefficients must be mod-

ified to conform to the liquid considered. Water is the most

common liquid and the only one that is of general interest to

engineers.

3. Units Used in Hydraulics.—It is common practice in the

United States and Great Britain to base hydraulic computations

on the foot-pound-second system of units. In practically all

hydraulic formulas these units are used, and if not otherwise





HYDRAULICS

CHAPTER I

INTRODUCTION

1. Fluids.—Fluids are substances which possess unlimited

mobility and which offer practically no resistance to change of

form. A perfect fluid yields to the shghtest tangential stress,

and can therefore have no tangential stress if it is at rest. Fluids

may be divided into two classes, (a) liquids, or fluids that are

practically incompressible, and (6) gases, or fluids that are highly

compressible.

2. Definitions.— Hydraulics is the science embodying the

laws that relate to the behavior of liquids, and particularly of

water. In its original sense the term hydraulics was applied

only to the flow of water in conduits, but the scope of the word
has been broadened by usage.

Hydraulics may be divided conveniently into three branches

:

(a) hydrostatics, which deals with liquids at rest, (b) hydrokinetics,

which treats of the laws governing the flow of liquids, and (c)

hydrodynamics, which relates to the forces exerted upon other

objects by liquids in motion or upon liquids by other objects in

motion.

The fundamental laws of hydraulics apply equally to all

liquids, but in hydrokinetics empirical coefficients must be mod-
ified to conform to the liquid considered. Water is the most

common liquid and the only one that is of general interest to

engineers.

3. Units Used in Hydraulics.—It is common practice in the

United States and Great Britain to base hydraulic computations

on the foot-pound-second system of units. In practically all

hydraulic formulas these units are used, and if not otherwise
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stated they are understood. Frequently the diameters of pipes

or orifices are expressed in inches, pressures are usually stated in

pounds per square inch, and volumes may be expressed in gallons.

Before applying such data to problems, conversion to the foot-

pound-second system of units should be made. Care in the

conversion of units is essential. Errors in hydraulic computa-

tions result more frequently from wrong use of units than from

any other cause.

4. Weight of Water.—Water has its maximum density at a

temperature of 39.3° F. At this temperature pure water has

been given a specific gravity of unity and it thus serves as a

standard of density for all substances. The density of water

decreases for temperatures above and below 39.3°. It freezes

at 32° and boils at 212° F. The weight of pure water at its

temperature of maximum density is 62.424 lbs. per cubic foot.

The weights at various temperatures are given in the following

table

:



COMPRESSIBILITY OF WATER

impurities may also be carried in suspension. These substances

are invariably heavier than water and they therefore increase its

weight. The impurities contained in rivers, inland lakes and
ordinary ground waters do not usually add more than one-tenth

of a pound to the weight per cubic foot. Ocean water weighs

about 64 lbs. per cubic foot. After long-continued droughts the

waters of Great Salt Lake and of the Dead Sea have been found

to weigh as much as 75 lbs. per cubic foot.

Since the weight of inland water is not greatly affected by
ordinary impurities nor changes of temperature, an average

weight of water may be used which usually will be close enough

for hydraulic computations. In this book the weight of a cubic

foot of water is taken as 62.4 lbs. Sea water will be assumed

to weigh 64.0 lbs. per cubic foot unless otherwise specified. In

very precise work weights corresponding to different temperatures

may be taken from the above table.

5. Compressibility of Water.—Water is commonly assumed to

be incompressible, but in reality it is slightly compressible. Upon
release from pressure water immediately regains its original volume.

For ordinary pressures the modulus of elasticity is constant

—

that is, the amount of compression is directly proportional to thf*

pressure appHed. The modulus of elasticity, E, varies with the

temperature as shown in the following table.

Temperature,

Fahrenheit
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6. Viscosity.—One of the characteristic properties of a liquid

is its ability to flow. A perfect liquid would be one in which every

particle could move in contact with adjacent particles without

friction. The pressures between all such particles would be normal

to their respective surfaces at the points of contact since there

could be no tangential stress without friction. All liquids are

capable, however, of resisting a certain amount of tangential

stress, and the extent to which they possess this ability is a

measure of their viscosity.

Water is one of the least viscous of all liquids. Oil, molasses

and wax are examples of liquids having greater viscosity.

7. Surface Tension.—At any point within a body of liquid

the molecules are attracted towards each other by equal forces.

The molecules forming the surface layer, however, are subjected

to an attraction downward that is not balanced by an upward

attraction. This causes a film or skin to form on the surface and

results in many interesting phenomena. A needle may be made to

float upon water so long as the surface film is not broken, but it

will sink immediately when the film is broken. Surface tension

causes the spherical shape of dewdrops or drops of rain. This

phenomenon also makes possible the hook gage described in

Art. 86. Where water flows in an open conduit, surface tension

retards velocities at the surface, the maximum velocity ordinarily

being below the surface (see Art. 110). Capillary action is also

explained by the phenomenon of surface tension combined with

that of adhesion.

A (Fig, 1) illustrates an open tube of small diameter im-

mersed in a liquid that wets

the tube. Water rises in the

tube higher than the level out-

^^55 side, the meniscus being con-

cave upward. The tube B is

immersed in mercury or some

Pjq j
other liquid which does not

wet the tube. In this case the

meniscus is convex upward and the level of the liquid in the tube
is depressed. The effect of capillarity decreases as the size of

tube increases. The water in a tube one-half inch in diameter
is approximately at the same level as the outside water, but it

is appreciably different for smaller tubes. For this reason,
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piezometer tubes (Art. 21) should not have diameters much
smaller than one-half inch.

8. Accuracy of Computations.—Accuracy of computations is

most desirable, but results should not be carried out to a greater

number of significant figures than the data justify. Doing this

implies an accuracy which does not exist and may give results

that are entirely misleading.

Suppose, for example, that it be desired to determine the

theoretical horse-power available in a stream where the discharge

is 311 cu. ft. per second and the available head is 12.0 ft. The
formula to be used is

„p _wQH^^-550-'

where w= the weight of a cubic foot of water;

Q=the discharge in cubic feet per second;

H= the available head.

Substituting in the formula,

62.4X311X12. _
550

423 . 41 horse-power.

Referring to the table, page 2, it is seen that for the ordinary

range of temperatures the weight of water may vary from 62.30

to 62.42 lbs. per cubic foot. Furthermore, the statement that the

discharge is 311 cu. ft. per second means merely that the exact

value is more nearly 311 than 310 or 312. In other words, the

true value may lie anywhere between 310.5 and 311.5. Likewise,

the fact that the head is given as 12.0 merely indicates that the

correct value lies somewhere between 11.95 and 12.05. Therefore

substituting in the formula the lower of these values,

62.30X310.5X11.95 .„ „. ,
f-^z- = 420.30 horse-power.
560

Again substituting in the formula the higher of the possible

values,

62.42X311.5X12.05
550

=426.00 horse-power.

It is evident, therefore, that the decimal .41 in the original

answer 423.41 is unjustified, and that the last whole number, 3,
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merely represents the most probable value, since the correct

value may lie anywhere between 420.30 and 426.00. The answer

should, therefore, be given as 423.

It may be stated in general that in any computation involving

multiplication or division, in which one or more of the numbers is

the result of observation, the answer should contain the same
number of significant figures as is contained in the observed quan-

tity having the fewest significant figures. In applying this rule it

should be understood that the last significant figure in the answer

is not necessarily correct, but represents merely the most probable

value. To give in the answer a greater number of significant

figures indicates a degree of accuracy that is unwarranted and
misleading.



CHAPTER II

PRINCIPLES OF HYDROSTATIC PRESSURE

9. Intensity of Pressure.—The intensity of pressure at any
point in a liquid is the amount of pressure per unit area.

If the intensity of pressure is the same at every point on any

area, A,

v- (1)

the symbol p representing the intensity of pressure and P the

total pressure acting upon the area.

If, however, the intensity of pressure is different at different

points, the intensity of pressure at any point wiU be equal to the

pressure on a small differential area surrounding the point divided

by the differential area, or

dP
V= dA'

(2)

Intensities of pressure are commonlj' expressed hi pounds

per square inch and pounds per - ^_-^^^^. ..^

square foot. Where there is no

danger of ambiguity, the term

pressure is often used as an abbre-

viated expression for iutensity of

pressure.

10. Direction of Resultant

Pressure.—The resultant pressure

on any plane in a liquid at rest is

normal to that plane.

Assume that the resultant pres-

sure P, on any plane AB (Fig. 2),

makes an angle other than 90° with the plane. Resolving P
into rectangular components Pi and P2, respectively parallel

7

Fig. 2.
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with and perpendicular to AB, gives a component Pi which can

be resisted only by a tangential stress. By definition, a liquid at

rest can resist no tangential stress and therefore the pressure

must be normal to the plane. This means that there can be no

static friction in hydraulics.

11. Pascal's Law.—At any point within a liquid at rest, the

intensity of pressure is the same in all directions. This principle

is known as Pascal's Law.

Consider an infinitesimally small wedge-shaped volume, BCD
(Fig. 3), in which the side BC is vertical, CD is horizontal and

BD makes any angle 6 with the hori-

zontal. Let Ai, A2 and A3 and pi,

772 and p3 represent, respectively the

areas of these sides and the intensities

of pressure to which they are subjected.

Assume that the ends of the wedge are

^ vertical and parallel.

Since the wedge is at the rest, the

principles of equilibrium may be ap-

plied to it. From Art. 10 it is known

that the pressures are normal to the

faces of the wedge. Choosing the

coordinate axes as indicated in Fig. 3 and setting up the equations

of equilibrium, XX = and S7 = 0, and neglecting the pressures

on the ends of the wedge, since they are the only forces acting

on the wedge which have components along the Z-axis and

therefore balance each other, the following expressions result;

piAi = p3A3 sin 6,

P2A2 = p3A3 cos d.

But

A3 sin 6=Ai and ^3 cos 6= A2.

Therefore

Since BD represents a plane making any angle with the hori-

zontal and the wedge is infinitesimally small so that the sides may
be considered as bounding a point, it is evident that the intensity

of pressure at any point must be the same in all directions.
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12. Free Surface of a Liquid.—Strictly speaking, a liquid

having a free surface is one on whose surface there is absolutely

no pressure. It will be shown later, however, that there is always

some pressure on the surface of every liquid.

In practice the free surface of a liquid is considered to be a

surface that is not in contact with the cover of the containing

vessel. Such a surface may or may not be subjected to the pres-

sure of the atmosphere.

It may be shown that the free surface of a liquid at rest is

horizontal. Assume a liquid having a surface which is not hori-

zontal, such as ABODE (Fig.

4). A plane MN, inclined to

the horizontal, may be

passed through any liquid

having such a surface in such

manner that a portion of the

liquid BCD lies above the plane. Since the hquid is at rest, BCD
must be in equiUbrium, but the vertical force of gravity would

necessarily have a component along the inclined plane which

could be resisted only by a tangential stress. As liquids are in-

capable of resisting tangential stress it follows that the free surface

must be horizontal.

13. Atmospheric Pressure.—All gases possess mass and con-

sequently have weight. The atmosphere, being a fluid composed

of a mixture of gases, exerts a pressure on every surface with

which it comes in contact. At sea level under normal conditions

atmospheric pressure amounts to 2116 lbs. per square foot or about

14.7 lbs. per square inch.

Fig. 4.

Variation in Atmospheric
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The intensity of atmospheric pressure decreases with the

altitude. Owing to compressibility, the density of air also

decreases with altitude, and therefore the intensity of pressure

changes less rapidly as the altitude increases. The accompanying

table gives approximate values of the atmospheric pressure corre-

sponding to different elevations above sea level.

14. Vacuum.—A perfect vacuum, that is, a space in which

there is no matter either in the solid, liquid or gaseous form, has

never been obtained. It is not difficult, however, to obtain a

space containing a minute quantity of matter. A space in contact

with a liquid, if it contains no other substance, always contains

vapor from that liquid. In a perfect vacuum there could be no

pressure.

In practice, the word "vacuum" is used frequently in con-

nection with any space having a pressure less than atmospheric

pressure, and the term " amount of vacuum" means the amount
the pressure is less than atmospheric pressure. The amount
of vacuum is usually expressed in inches of mercury column

or in pounds per square inch measured from atmospheric pressure

as a base. For example, if the pressure within a vessel is reduced

to 12 lbs. per square inch, which is equivalent to 24.5 in. of mer-
cury column, there is said to be a vacuum of 2.7 lbs. per square

inch or 5.5 inches of mercury. (Arts. 20 and 22.)

15. Absolute and Qage Pressure.—The intensity of pressure

above absolute zero is called absolute pressure. Obviously, a

negative absolute pressure is impossible.

Usually pressure gages are designed to measure the intensities

of pressure above or below atmospheric pressure as a base. Pres-

sures so measured are called relative or gage pressures. Negative
gage pressures indicate the amount of vacuum, and at sea level

pressures as low as, but no lower than, — 14.7 lbs. per square inch

are possible. Absolute pressure is always equal to gage pressure

plus atmospheric pressure.

Fig. 5 Ulustrates a gage dial, on the inner circle of which is

shown the ordinary gage and vacuum scale. The outer scale

indicates the corresponding absolute pressures.

16. Intensity of Pressure at any Point.—To determine the
intensity of pressure at any point in a liquid at rest or the variation
in pressure in such a liquid, consider any two points such as 1 and
2 (Fig. 6) whose vertical depths below the free surface of the
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liquid are hi and h2, respectively. Consider that these points lie

in the ends of an elementary prism of the Hquid, having a cross-

sectional area dA and length I. Since this prism is at rest, all of

the forces acting upon it must be in equihbrium. These forces

consist of the fluid pressure on the sides and ends of the prism
and the force of gravity,

h,-ht

Fig. 5.—Gage dial.

Let X and Y, the coordinate axes, be respectively parallel

with and perpendicular to the axis of the prism which makes an

angle 6 with the vertical. Also let pi and p2 be the intensities of

pressure at points 1 and 2, respectively, and w be the unit weight of

the liquid.

Considering forces acting to the left along the X-axis as

negative and remembering that the pressures on the sides of the

prism are normal to the X-axis and therefore have no X com-

ponents, the following equation may be written:

2X = pidA— p2dA—wldA cos d= 0.

Since I cos d= hi— h2, this reduces to

pi— p2 = w(hi — h2). (3)

From this equation it is evident that in any liquid the difference

in pressure between any two points is the product of the unit

weight of the liquid and the difference in elevation of the points.

If hi = h2, pi must equal p2; or, in other words, in any continuous

homogeneous body of liquid at rest, the intensities of pressure at

all points in a horizontal plane must be the same. Stated con-
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versely, in any homogeneous liquid at rest all points having equal

intensities of pressure must lie in a horizontal plane.

If in equation (3) hz is made equal to zero, p2 is the intensity of

pressure on the liquid surface. In case that pressure is atmos-

pheric, or Pa, equation (3) becomes

pi=whi+pa, (4)

or, in general,

p =wh+pa (5)

In this equation p is evidently the absolute pressure at any point

in the Uquid at a depth h below the free surface. The correspond-

ing gage pressure is

p= wh (6)

In the use of the above equations care must be taken to express

all of the factors involved in their proper units. Unless otherwise

stated p wiU always be understood to be intensity of pressure in

pounds per square foot, w will be the weight of a cubic foot of the

liquid and h will be measured in feet.

At any point in a body of water at a depth h below the free

surface, the absolute pressure in pounds per square foot is

p = 62Ah+211Q (7)

The relative or gage pressure in pounds per square foot is

p = 62Ah (8)

If, however, it is desired to express the pressure in pounds per

square inch it is necessary only to divide through by 144. Hence
if p' is used to express absolute pressure in pounds per square

inch,

,_ p _62.4 2116
^ 144 144 "•" 144

= .433/1+14.7,

or, expressed as gage pressure in pounds per square inch,

p'=ASSh-
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17. Pressure Head.—Equation (6) may be written in the form,

^ = h (9)w

Here h, or its equivalent, —, represents the height of a column of

liquid of unit weight w that will produce an intensity of pressure,

p. It is therefore called pressure head.

In considering water pressures the pressure head, h, is expressed

in feet of water column regardless of whether it is obtained by
dividing the pressure in pounds per square foot by 62.4 or by
dividing the pressure in pounds per square inch by 0.433.

18. Transmission of I*ressure.—Writing equation (3) in the

form,

Pl = P2+w(Al— /l2), (10)

it is evident that the pressure at any point, such as point 1 (Fig. 6 ),

in a liquid at rest is equal to the pressure at any other point, such

as point 2, plus the pressure produced by a column of the Uquid

whose height, h, is equal to the difference in elevation between the

two points. Any change in the intensity of pressure at point 2

would cause an equal change at point 1. In other words, a pres-

sure applied at any point in a liquid at rest is transmitted equally

and undiminished to every other point in the liquid.

This principle is made use of in the hydraulic jack by means

of which heavy weights are lifted by the application of relatively

small forces.

Example.—In Fig. 7 asstmie that the piston and weight, W,
are at the same elevation, the face of the piston having an area of

2 sq. in. and the face of the
p

weight 20 sq. in. What weight |< a'l"

W can be lifted by a force P of

100 lbs. apphed at the end of

the lever as shown in the

figure?

Since atmospheric pressure Fig. 7.—Hydraulic jack,

is acting on both the piston

and weight its resultant effect will be zero and it may therefore be
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neglected. Taking monaents about the force F on the piston is

7?"= 600 lbs.

-;r-= 300 lbs. per square inch.

which is the intensity of pressure on the face of the piston, and

since the two are at the same elevation in a homogeneous liquid

at rest it is also the intensity of pressure on the weight. Therefore

Tf= 20X300

= 6000 lbs.

Evidently this is the value of W for equilibrium; any weight less

than 6000 pounds could be lifted by the force of 100 lbs.

19. Vapor Pressure.—Whenever the free surface of any liquid

is exposed to the atmosphere, evaporation is continually taking

place. If, however, the surface is in contact with an enclcsed

space, evaporation takes place only until the space becomes

saturated with vapor. This vapor produces a pressure, the

amount of which depends only upon the temperature and is

entirely independent of the presence or absence of air or other

gas within the enclosed space. The pressure exerted by a vapor

within a closed space is called vapor pressure.

In Fig, 8, A represents a tube having its open end submerged

in water and a stopcock at its

upper end. Consider the air

within A to be absolutely dry

at the time the stopcock is

closed. At the instant of

closure the water surfaces in-

side and outside the tube will

stand at the same level.

Evaporation within the tube,

however, will soon saturate the

space containing air and create

a vapor pressure, pt, which

will cause a depression of the

ami. tlUjummilu

w

Fig. 8.

Pa

water surface within the vessel equal to —

.
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In the same figure, B represents a tube closed at the upper end.

Assume a perfect vacuum in the space above the water in the tube.

If this condition were possible the water level in B wculd stand

at an elevation — above the water surface outside. Vapor
w

pressure within the vessel, however, causes a depression — exactly
w

equal to that produced within A, so that the maximum height of

water column possible under conditions of equilibrium in such a

tube is ———. Vapor pressures increase with the temperature,
w

as is shown in the following table.

Vapor Pressures op Water in Feet of Water Column

Tempera-
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!-*

J..

Although theoretically water or any other liquid may be used

for barometers, two difficulties arise in using water. First, the

height of water column necessary to balance an atmospheric pres-

sure of 14.7 lbs. per square inch is about 34 feet at sea level, which

height is too great for convenient use; and, second, as shown in

Art. 19, water vapor collecting in the upper portion of the tube

creates a pressure which partially balances the atmospheric pres-

sure, so that the barometer does not indicate the total atmospheric

pressure.

Since mercury is the heaviest known liquid and has a very low

vapor pressure at ordinary air temperatures it is more satisfactory

for use in barometers than any other liquid.

21. Piezometer Tubes.—A piezometer tube is a tube tapped

into the wall of a vessel or pipe for the purpose

of measuring moderate pressures. Thus the

height of water column in tube a (Fig. 10) is

a measure of the pressure at A, the top of the

pipe. Similarly the pressure at the elevation B
is measured by the height of water column in

tube b, that is, p = wh. Piezometer tubes

always measure gage pressures since the water

surface in the tube is subjected to atmospheric

pressure. Obviously, the level to which water
will rise in a tube will be the same regardless

of whether the connection is made in the side,

bottom or cover of the containing vessel.

Piezometer tubes are also used to measure pressure heads in

pipes where the water is in motion. Such tubes should enter the

pipe in a direction at right angles to the direction of flow and the

connecting end should be flush with the inner surface of the pipe.

If these precautions are not observed, the height of water column
may be affected by the velocity of the water, the action bemg
similar to that which occurs in Pitot tubes. (See Art. 48.)

In order to avoid the effects of capillary action, piezometer
tubes should be at least 5 in. in diameter.

Pressures less than atmospheric pressiu-e may be measured by
either of the methods illustrated in Fig. 11 which shows a pipe

section AB in which the water is flowing. The vertical distance,

h, which the water surface, C, in the open tube drops below A
is a measure of the pressure below atmospheric pressure, or, in

Fig. 10.— Cross-

section of pipe

with piezometer

tubes.
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other words, it is a measure of the amount of vacuum existing at

A. This is true since the pressure at C is atmospheric, being at

the same level as C in a homogeneous liquid at rest and the

pressure at A must be less than at C by the amount wh. (See

Art. 17.)

To the right in Fig. 11 is shown an inverted piezometer tube

with the lower end immersed in an open vessel containing water.

Atmospheric pressure acting on the water surface in the vessel

forces water to rise in the tube to a height h which measures the

vacuum existing at B. Air will be drawn into the pipe at B
until the intensity of pressure on the water surface in the tube

equals the pressure at B. Neglecting the weight of the air in

the tube, it is evident that pB= PD= Pa— wh. Here pa is expressed

as absolute pressure since atmospheric pressure is included in

the equation.

Fig. 11. Fig. 12.—Mercury gage.

22. Mercury Cage.—In the measurement of pressures so great

that the length of tube required for a water piezometer would be

unwieldy, the mercury U-tube, illustrated in Fig. 12, is a con-

venient substitute.

Water under pressure fills the pipe, or vessel at A and the tube

down to the level D. Mercury fills the tube from D around to B,

above which level the tube is open to the atmosphere.

The pressure at C equals the pressure at B which is atmos-

pheric, or Pa, plus the pressure produced by the mercury column,

h. Hence,

pc= Pa+w'h (11)

If PC and Pa are expressed in pounds per square foot and h

in feet, w' is the weight of a cubic foot of mercury, or 13.6 (specific
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gravity of mercury) X 62. 4 = 848 lbs. If, however, fc and p<. are

expressed in pounds per square inch and h in feet,

w'=^ (or 13.6X0.433) =5.89.
144

The pressure at D (Fig. 12) is the same as at C, being at the

same level in a homogeneous liquid at rest. The pressure at A
is equal to that at C minus the pressure produced by the water

column a, or,

'PA = Vc—wa (12)

Here again if p^ and pc are expressed in pounds per square

foot and a in feet, w equals 62.4, but if p^ and pc are expressed

in pounds per square inch and a in feet, w equals 0.433. Com-

bining equations (11) and (12),

PA = pa+w'h—'wa. . . . (13)

Here Pa is expressed as absolute pressure,

since po (atmospheric pressure) enters into the

equation.

If Pa is less than atmospheric pressure by

an amount greater than wa, h is negative, as in

Fig. 13, and

PA — pa—w'h—wa. . . (14)

23. The Differential Gage.—The dif-

ferential gage as the name indicates, is

used only for measuring differences in pres-

sure. A liquid heavier or lighter than water

is used in the gage, depending upon whether

the differences in pressure to be measured

are great or small.

In Fig. 14 is shown the form of dif-

ferential gage usually employed for meas-

uring large differences in pressure. M and

A'^ are two pipes containing water under

different pressures which may be either

greater or less than atmospheric pressure.

The two pipes are connected by a bent

tube, of which the portion BCD is filled with mercury, while all

of the remaining space is filled with water.

Fig. 14.—Differential

mercury gage.
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If M and N were at the same elevation the difference in pres-

sure in the two pipes M'ould be measured by the pressure due to the

mercury column DC minus that due to the water column EF
or would equal w'h—wh.

If the two pipes are at different elevations, to the above

difference in pressure must be added or subtracted the intensity

of pressure produced by the water colimin whose height is equal

to the difference in elevation of the pipes. Proof of these state-

ments follows.

The pressure at A equals that atM minus the pressure produced

by the water column whose height is a. Evidently the pressure

at B is the same as at ^, being at the same elevation in a homo-

geneous liquid at rest. For the same reason the pressures at

B and C are also equal. Hence,

pc=PB= pA =pM—wa (15)

The pressures at C and F are not equal, since these points are

not connected by a homogeneous liquid.

The pressure at D is equal to that at C minus the pressure

produced by the mercury column h and is

Pd= Pc-

Pe=Pd

v'h. (16)

and
p!f=PE+w{h+b).

Combining these equations

pM—wa—w'h+wh+wb-pN, (17)

or

PM—pN= w'h—wh—w{b—a). . (18)

Obviously, the greater the difference between

w' and w the greater the difference in pressure

that can be measured for any given value

of ^.

Fig. 15 illustrates a type of differential

gage used when the difference in pressures to

be measured is small. Usually a liquid, such

as a light oil, whose specific gravity is slightly

less than unity is used in the upper portion of the inverted U-tube,

AC, the remainder of the tube being filled with water.

Fig. Differential

oil gage.
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As with the mercury gage, if M and N are at the same elevation

the difference in pressure will be equal to that produced by the

oil column AB and the water coliunn CD. If M and N are at

different levels, then

or

PM—wa—w'h+wh+wb= pN

'PM—TpN=w'h—wh—w{b—a),

(19)

(20)

the equations being the same as were obtained for the mercury

differential gage.

The use of a liquid whose unit weight w' is very nearly the

same as that of water makes a very sensitive measuring device.

With such a device small differences in pressure will produce

relatively large values of h.

The value of h produced by any particular difference in pressure

is independent of the relative cross-sectional areas of the columns

AB and CD. This is evident since it is the difference in intensities

of pressure that is measured and not difference in total pressures.

24. Suction Pumps and Siphons.—Suction pumps depend upon

atmospheric pressure for their operation. The plunger creates a

partial vacuum in the piunp stock, and atmospheric pressure acting

upon the outer water surface causes water to rise within the

pump.

The operation of siphons is also produced by atmospheric

pressure. In Fig. 16 the two

vessels, A and B, are connected

by a tube. As long as the tube

is filled with air there is no

tendency for water to flow. If,

however, air is exhausted from

the tube at C, atmospheric

pressure will cause water to rise

in each leg of the tube an equal

height above the water sur-

faces. When water has been drawn up a distance d, equal to the

height of the summit above the water surface in the upper vessel

flow from A to B will begin. If the velocity of the water is high

enough, any air entrapped in the tube will be carried out

by the moving water, and the tube will flow full. If the sum-

FiG. 16.—Siphon.
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mit of the siphon is a distance greater than E^ZZ" above the
w

water surface in the higher vessel, siphon action is impossible.

It is not necessary that the discharge end of the tube be sub-

merged to induce siphon action. If flow is started by suction at

the free end of the tube or by other means, it will continue as long

as the discharge end of the tube is lower than the water surface

in the vessel or until the vacuum in the siphon is broken.

PROBLEMS

1. Determine the intensity of pressure on the face of a dam at a point

40 ft. below the water surface.

(a) Expressed in pounds per square foot gage pressure.

(ft) Expressed in pounds per square inch gage pressure.

(c) Expressed in poimds per square foot absolute pressure.

(d) Expressed in pounds per square inch absolute pressure.

2. Determine the intensity of pressure in a vessel of mercury (sp. gr. = 13.6)

at a point 8 in. below the surface, expressing the answer in the' same units as

in Problem 1.

3. A vertical pipe, 100 ft. long and 1 in. in diameter, has its lower end open

and flush with the inner surface of the cover of a box, 2 ft. square and 6 in.

high. The bottom of the box is horizontal. Neglecting the weight of the

pipe and box, both of which are filled with water, determine

:

(o) The total hydrostatic pressure on the bottom of the box.

(b) The total pressure exerted on the floor on which the box rests.

4. At what height will water stand in a water barometer at an altitude

of 5000 ft. above sea level if the temperature of the water is 70° F.? Under

similar conditions what would be the reading of a mercury barometer,

neglecting the vapor pressure of mercury?

5. What are the absolute and gage pressures in pounds per square inch

existing in the upper end of the water barometer under the conditions of

Problem 4?

6. What height of mercury column will cause an intensity of pressure of

100 lbs. per square inch? What is the equivalent height of v/ater column?

7. A pipe 1 in. in diameter is connected with a cyhnder 24 in. in diameter,

each being horizontal and fitted with pistons. The space between the pistons

is filled with water. Neglecting friction, what force will have to be applied

to the larger piston to balance a force of 20 lbs. applied to the smaller piston?

8. In Problem 7, one leg of a mercury U-tube is coimected with the

smaller cylinder. The mercury in this leg stands 30 in. below the center of

the pipe, the intervening space being filled with water. What is the height

of mercury in the other leg, the end of which is open to the air ?

9. A U-tube with both ends open to the atmosphere contains mercury

in the lower portion. In one leg, water stands 30 in. above the surface of the

mercury; in the other leg, oil (sp. gr. =0.80) stands 18 in. above the surface
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of the mercury. What is the difference in elevation between the surfaces of

the oil and water columns?

10. Referring to Fig. 15, page 19, if the pressure at M is 20 lbs. per square

inch, what is the corresponding p. essure at A^ if a = 1 ft., b = 4 ft. and ^ = 8 in.?

(Sp.gr. of oil = 0.80.)

11. In Fig. 15, page 19, determine the value of ^, if a = 1 ft., 6 = 4 ft. and the

pressure at iV is 1.4 lbs. per square inch greater than at M. (Sp. gr. of oil

0.80.)

12. A vertical tube 10 ft. long, with its upper end closed and lower end

open, has its lower end submerged 4 ft. in a tank of water. Neglecting vapor

pressure, how much will the water level in the tube be below the level in the

tank?

13. In Fig. 7, page 13, if the diameters of the two cylinders are 3 in. and

24 in. and the face of the smaller piston is 20 ft. above the face of the weight

W, what force P is required to maintain equilibrium if IF= 8000 lbs.?

14. Referring to Fig. 12, page 17, if h = 2Q in. and o = 12 in., what is the

absolute pressure in poxmds per square inch at At What is the gage pressure?

15. In Problem 14, if the surface of the mercury column in each leg of the

U-tube stands at the same elevation as A when the pressure at A is atmos-

pheric, determine the values of a and h when the gage pressure at A is 12 lbs.

per square inch, the diameter of the tube being the same throughout.

16. Referring to Fig. 13, page 18, determine the absolute pressure in

pounds per square inch at A when a = 8 in. and A = 10 in. What is the corre-

sponding gage pressure?

17. In Fig. 14, page 18, let c=6 ft., and assume that ^ = when the

pressure atM is atmospheric. If the pressure at N remains constant, determine

the value of h when the gage pressure at Af is increased to 8 lbs. per square

inch.

18 In Fig. 14, page 18, if a = 24 in. and c=6 ft., what is the value of h

when the pressure atM is 10 lbs. per square inch greater than at N.
19. A and B are, respectively, the closed and open ends of a U-tube,

both being at the same elevation. For a distance of 18 in. below A, the

tube is filled with oil (sp. gr. =0.8); for a distance of 3 ft. below B, the tube

is filled with water, on the surface of which atmospheric pressure is acting.

The remainder of the tube is fiUed with mercury. What is the absolute

pressure at A expressed in pounds per square inch?

20. In Problem 19, if B were closed and A were open to the atmosphere,

what would be the gage pressure at B, expressed in pounds per square inch?



CHAPTER III

PRESSURE ON SURFACES

25. Total Pressure on Plane Areas.—The total pressure on

any plane surface is equal to the product of its area and the

intensity of pressure at its center of gravity. This may be proved

as follows:

Fig. 17 shows projections on two vertical planes normal to

(a) CO
Fig. 17.

each other, of any plane surface, MN, subjected to the full static

pressure of a liquid with a free surface. Projection (6) is on a

plane at right angles to MN. The surface MN makes any angle,

e, with the horizontal, and, extended upward, the plane of this

surface intersects the surface of the liquid in the line 00, shown

as the point in ib).

Consider the surface MN to be made up of an infinite number

of horizontal strips each having a width dy so small that the

23
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intensity of pressure on it may be considered constant. The area

of any strip whose length is x, is

dA=xdy.

The liquid having a unit weight of w, the intensity of pressure on

any strip at a depth h below the surface and at a distance y from the

line 00 is

'p=wh=wy sax 0.

The total pressure on the strip is

dP=wy sin 6 dA

and the total pressure on MN is

P =w sin eJydA (1)

From the definition of center of gravity,

jydA = Ay', (2)

where y' is the distance from the line 00 to the center of gravity

of A. Hence,

P=w sine Ay' (3)

Since the vertical depth of the center of gravity below the water

surface is

h' = y' sine, (4)

it follows that

P = wh'A, (5)

where wh' represents the intensity of pressure at the center of

gravity of A.

26. Center of Pressure on Plane Areas.—Any plane surface

subjected to hydrostatic pressure is acted upon by an infinite

number of parallel forces whose magnitudes vary with the depth,

below the free surface, of the various infinitesimal areas on which

the respective forces act. Since these forces are parallel they may
be replaced by a single resultant force P. The point on the

surface at which this resultant force acts is called the center of

pressure. In other words, if the total hydrostatic pressure on any

area were applied at the center of pressure the same effect would be



CE,NTER OF PRESSURE ON PLANE AREAS 25

produced on the area as is produced by the variable pressures

distributed over the area.

The position of the horizontal line containing the center of

pressure of a plane surface subjected to hydrostatic pressure may
be determined by taking moments of all the forces acting on the

area about some horizontal axis in the plane of the surface. For

the case described in the preceding article and illustrated in

Fig 17, the line 00 may be taken as the axis of moments for the

surface MN. Designating by y the distance to the center of

pressure from the axis of moments, it follows from the defini-

tion of center of pressure that,

Py=JydP, (6)

(7)

or

JydP
'' P

It was shown in Ai-t. 25 that

dP= wy sin 8 dA

and
P =w sin 8 Ay' (3)

Substituting these values, equation (7) becomes

w sin 9 j y^dA j y^dA

y^ wsinSAy' Ay' '
^^^

in which jy^dA is the moment of inertia, Jo, of MN with respect

to the axis 00, and Ay' is the statical moment, S, of MN with

respect to the same axis.

Therefore,

y-^-i
(9)

Since the moment of inertia of an area about any axis equals

the moment of inertia of the area about a parallel axis through its

center of gravity plus the product of the area and the square of the

distance between the two axes, equation (9) may be written,

_ Ak^+Ay'^
y^ Ay'

^^°)
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or y- (11)

where k is the radius of gyration of the area.

The above discussion refers only to the determination of the

position of the horizontal line which contains the center of pressure

—that is, y gives only the distance from the horizontal axis of

moments to the center of pressure. For any figure such that the

locus of the midpoints of the horizontal strips is a straight line,

as, for instance, a triangle or trapezoid with base horizontal, the

center of pressure falls on that straight line. It is with such

figures that the engineer is usually concerned. For other figures,

the horizontal location of the center of pressure may be found in

a manner similar to that described above by taking moments
about an axis, within the plane of the surface, at right angles to the

horizontal axis of moments.

Examples ^
: (a) Find the center of pressure on the vertical

triangular gate shown in Fig. 18.

^ It is apparent that the solution of any problem involving the location of the

center of pressure, for an area whose radius of gyration is known or can be
readily found, may be accomplished by the simple substitution of values for

k and y' in equation (11). This involves a mere mathematical process with
no necessity on the part of the student for either thought or understanding
of fundamental principles. It is therefore recormnended that the beginner
solve all such problems by the use of equation (6) which is really nothing
more than a formulated expression of the definition of center of pressure.

The examples given are solved by this method.
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Using the equation

Py = jydP (6)

it will be necessary to express dP in terms of y.

In this case it will be convenient to take moments about 0-0,

a horizontal line through the vertex of the gate, lying in the plane

of the gate. Moments could, however, be taken about any other

horizontal axis lying within this plane.

The total pressure dP on any thin horizontal strip at a distance

y from the axis of moments equals the intensity of pressure, wh,

times the area dA, or

dP=whdA.

Since w= 62A, h=5+y and dA=xdy

dP=&2A{5+y)xdy.

Since x varies with y it must be expressed in terms of y before

integrating.

From similar triangles.

x_y

Substituting,

and

4 = 3 °' ^= 3^-

also

therefore

dP = 62.4Xi {5y+y^)dy

CydP= 62 AXif\5y^+y^)dy,

P-=wh'A = &2AX7X6,

62AXiC\5y^+y^)dy
^=

62.4X42
'

= ^%[l2/'+i2/*]'

= ^«^(fX27+iX81)
=2^ ft. below the vertex,

or ^ ft. below the center of gravity of the gate.

The horizontal location of the center of pressure in this case

is on the median connecting the vertex with the base.
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(b) Find the center of pressure on the inchned rectangular

gate shown in Fig. 19.

Taking moments again about the top of the gate as an axis,

where

and

jy dP= jywh dA,

h = 5+ycosS0'

dA=6dy
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(c) In example (b) what force F applied normally to the gate

at its lower edge will be required to open it?

Knowing the total pressure, P, on the gate and the location

of the center of pressure, by taking moments about the upper

edge which is the center of rotation,

4F= 2.17P

F =^^X62.4X24(5+V3)

= 5470 lbs.

The value of F can also be found directly without determining

either the location of the center of pressure or the total pressure.

Taking moments about the top of the gate,

4F= CydP

V3
2

-r^
=

I
ywh dA

= 62.4X6ji Uy+-^^Jdy

=e2AX6[ly^+^l

= 62.4X6(|xl6+-g^X64)

= 21890

F = 5470 lbs.

If this force were applied at the bottom of the gate, the gate

would be in equilibrium and there would be no reaction on the

supports along the lower edge or sides of the gate. Any force

greater than 5470 lbs. would open the gate.

27. Graphical Method of Location of Center of Pressure.—
Semigraphic methods may be used advantageously in locating the

center of pressure on any plane area whose width is constant.
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The rectangular surface, ABCD, illustrated in Fig. 19 is shown in

perspective in Fig. 20a. BC (Fig. 206) represents the projection

of the rectangle on a vertical plane perpendicular to the place of

the surface. The vertical depths below the water surface of the

top and bottom of the rectangle are, respectively, hi and fe. The
intensity of pressure, whi, on the top of the rectangle is represented

by the equal ordinates AA' and BE' (Fig. 20a), and on the bottom
of the rectangle the equal ordinates CC and DD' represent the

intensity of pressure lohz-

BB' and CC (Fig. 206) represent, to a reduced scale, the inten-

sities of pressure at B and C. BB" and CC" are laid off equal

(0-) (6)

Fig. 20.

to 6BB' and 6CC', respectively, and therefore represent the areas
ABB'A' and DCC'D'. The total pressure acting on the surface

ABCD is therefore represented by the area of the pressure diagram
BCC"B" as it is similarly represented by the pressure volume
ABCDA'B'C'D'. Also the resultant pressure on the surface acts
through the center of gravity of the pressure area BCC'B" just

as it acts through the center of gravity of the pressure volume
ABCDA'B'C'D'.

The trapezoid BCC'B" may be divided into the rectangle
BB"EC and the triangle B"C"E, the locations of whose centers of

gravity are known. By taking moments of each of these pressure
areas about C"C and dividing the sum of these moments by the
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area of the trapezoid, the distance of the center of pressure from
C is determined. Thus

BB"=wX5X6
and

CC" =w{5+2V3)x6,
therefore

C"E =wX2V3XQ.

Taking moments about C"C,

4XwX5X6X2+fXwX2\/3X6Xf
y

4Xi[t«X5X6+w(5+2V3) X6]

= 1.83 ft.

Example (c), page 29, can also be solved by taking moments
about BB" as follows:

4F= 4X62.4X5X6X2+1X62.4X2V3X6XI
from which

F= 5470 lbs.

For areas having a variable width, OB"C" is not a straight

line and the center of gravity of the pressure area is not so easily

located. For such areas it will probably be easier to use the

analytical method described in Art. 26.

28. Position of Center of Pressure with Respect to Center of

Gravity.—If the intensity of pressure varies over any surface, the

center of pressure is below the center of gravity. Consider the

equation (see Art. 26),

~=y'+^^ (11)

Since —i must always be positive, y must be greater than y

.

y
This may also be seen from Fig. 20. The center of pressure

on ABCD is the normal projection on that plane of the center of

gravity of the pressure volume ABCDA'B'C'D'. Evidently this

projection must fall below the center of gravity of ABCD since

it would fall at the center of gravity if the intensity of pressure

on the surface were uniform, in which case the pressure volume

would be ABCDA'B'EF.
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It also appears from the above discussion and from a study of

Fig. 20 that for any area the greater its depth below the surface

of the liquid the more nearly will the center of pressure approach

the center of gravity. The two coincide at an infinite depth.

In two cases the intensity of pressure is constant over the area

and hence the center of pressure coincides with the center of

gravity:

(a) When the surface is horizontal.

(b) When both sides of the area are completely submerged in

liquids of the same density. As an illustration consider the gate

AB (Fig. 21). Water stands hi feet above the top of the gate on

one side and h2 feet above it on the other side. The distribution

of pressure on the left is

f represented by the trapezoid

ABMN and on the right by
the trapezoid AHKB. The
triangle GED is similar to

CFG and equal to CE'P by

construction. The trapezoid

of pressure AHKB is therefore

balanced by the trapezoid

ONML. The resultant in-

tensity of pressure on the

surface is therefore constant,

as represented by the rect-

angle OABL, and the center

the center of gravity of the

of the shape of the surface,

where h is the
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The dam may

Fig, 22,

face, AB, of the dam shown in section in Fig. 22

have any length normal to the

plane of the paper. Choosing

the coordinate axes as shown,

let BF represent the trace of

a vertical plane normal to the

XY plane. Consider the equi-

librium of the volume of liquid

whose cross-section, as shown
in the figure, is ABF and

whose ends are parallel with

the XY plane and separated

by a distance equal to the

length of the dam. Since this

volume of hquid is assumed to be in equilibrium, 2X= and
SF= 0.

The only forces that have any components parallel with the

X-axis are the X-components of the normal pressures acting on the

surface AB and the normal pressure on the vertical plan BF.

Since BF is the projection of the face AB on a vertical plane nor-

mal to the X-axis, it follows that the resultant of the X-com-
ponents of the pressures on AB, or Px, equals the normal pressure

on the projection of ^5 on a vertical plane normal to the X-axis.

As the demonstration holds true independently of the manner in

which the X-axis is chosen, it may be stated in general that the

component, along any horizontal axis, of the pressure on any area

is equal to the normal pressure on that vertical projection of the

area which is normal to the chosen axis.

In a similar manner consider the vertical forces acting on the

volume of liquid whose cross-section is ABF (Fig. 22). The only

vertical forces are the force of gravity, or the weight of the liquid,

and the vertical components of the pressures on the surface AB,
which forces must therefore be equal in magnitude. In other

words, the vertical component of the pressure on any surface is

equal to the weight of that volume of the liquid extending verti-

cally from the surface to the free surface of the liquid. If the pres-

sure were acting upward on the surface, its magnitude, as will be

shown later (Art. 30), would be equal to the weight of that volume

of the liquid that would extend from the surface to the free surface

of the liquid. The pressures considered in this article are relative
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pressures, since obviously atmospheric pressure is acting on both

sides of the dam and the resultant effect is zero.

Examples: (a) What will

be the resultant pressure on

the base BC of the masonry

dam subjected to water pres-

sure, as shown in Fig. 23, and

where will this resultant in-

tersect the base?

The following niunerical

values are given. Area of

section ABCD= 600 sq. ft.

Area of water section OAB
= 200 sq. ft. Weight of ma-
sonry= 150 lbs. per cubic foot.

Linear dimensions are shown
in figure.

A section of dam 1 ft. long

will be considered to be in equi-

librium under the action of the

following forces:

PF= the total weight of the section, acting through the center of

gravity of the cross-section ABCD;
P = resultant hydrostatic pressure acting on the face AB;
i2 = reaction between the earth and the base, BC, of the dam.

This reaction must necessarily be equal, opposite and colinear

with the resultant of W and P.

Since the dam is in equilibrium when subjected to the above
forces, the fundamental principles of equilibrium may be applied

—

that is,

XX=0, SF=0 and 2M= 0.

For 2X=0; Rx= Px and for the data given

P:.= 62.4X^X45= 63,200 lbs.

For 27= 0; R^=Py+W and for the data given

P„= 200X62 . 4= 12,480 lbs.

W = 600X 150= 90,000 lbs.

Ry = 12,480+90,000 = 102,480 lbs.

Fig. 23.
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The total resultant pressure on the base is

R = ^63,2002+ 102,4802 = 122,500 lbs.

For 2M= 0, taking moments about an axis through C, normal to

the plane of the section, X being the distance from C at which the

resultant, R, intersects the base of the dam,

RyX+Ai^Px-2bPy-lSW = Q.

Substituting the numerical values of Ry, Pz, W and Py

102,480X+63,200X-V— 12,480X25-90,000X18 =

and reducing

Z = 8.6ft.

Thus the resultant pressure of 122,500 lbs. per linear foot of dam
intersects the base 8.6 ft. from the toe of the dam.

(6) Determine the tensile stress in the walls of a 24-in. pipe

carrying water under a head of 100 ft.

In a case hke this where the head is relatively large compared

to the diameter of the pipe, it is customary to consider that the

intensity of pressure is uniform throughout the pipe.

A cross-section of the pipe is shown in Fig. 24. Consider a

semicircular segment, AB, of unit length, held in equilibrivun by
the two forces T. Evidently

T is the tensile stress in the — =--—

-

'''"*'

wall of the pipe, and if the

intensity of pressure is

assumed to be constant, T
is constant at all points in 1. ><jLLi^ t.«_

the section. The sum of

the horizontal components

of the normal pressures acting on the semicircular segment is equal

to the normal pressure on the vertical projection of this segment

(Art. 29). Calling this normal pressure P, since 2H = 0,

2r=P = 'UjM =62.4X100X2 = 12,480 lbs.

and
7=6,240 lbs.

Fig. 24.
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The required thickness of a steel pipe, using a safe working

stress of 16,000 lbs. per square inch is

6240 . „„„. .

'=16000X12
= 00325 m.

or a little more than ^ in.

PROBLEMS

1. A vertical rectangular gate is 4 ft. wide and 6 ft. high. Its upper edge

is horizontal and on the water surface. What is the total pressure on the

gate and where is the center of pressure?

2. Solve Problem 1 if the water surface is 5 ft. above the top of the gate,

other conditions remaining the same.

3. Solve Problem 2 if the plane of the gate makes an angle of 30° with the

vertical, other conditions remaining unchanged.

4. A cubical box, 24 in. on each edge, has its base horizontal and is half

filled with water. One of the sides is held in position by means of four screws,

one at each comer. Find the tension in each screw due to the water pressure.

6. A vertical, triangular gate has a horizontal base 4 ft. long, 3 ft. below

the vertex and 5 ft. below the water surface. What is the total pressure on

the gate and where is the center of pressure?

6. A vertical, triangular gate has a horizontal base 3 ft. long and 2 ft.

below the water surface. The vertex of the gate is 4 ft. below the base.

What force normal to the gate must be applied at its vertex to open the gate?

7. A triangular gate having a horizontal base 4 ft. long and an altitude

of 6 ft, is inclined 45° from the vertical .with the vertex pointing upward.

The base of the gate is 8 ft. below the water surface. What normal force

must be applied at the vertex of the gate to open it?

8. A cylindrical tank, having a vertical axis, is 6 ft. in diameter and
10 ft, high. Its sides are held in position by means of two steel hoops, one

v^ at the top and one at the bottom. What is

// the tensile stress in each hoop when the

b^=55±^=^.a=3!'-==--^^^ tank is filled with water?

// 9. What is the greatest height, h, to

/X which the water can rise without causing the

\)// dam shown in Fig. 25 to collapse? Assume
//\l 6 to be so great that water will not flow over

//\^\, the top of the dam.

// ^v < 10. If 6 in the figure is 20 ft., find the

//{ ,5= 46/'xV least value of h at which the dam will

., yyyX'A^yyyyyyJ^y^l^^^yyy.
collapse

Pjq 25
"• ^ vertical, triangular gate has a

horizontal base 8 ft. long and 6 ft. below
the water surface. Its vertex is 2 ft, above the water surface. What normal
force must be applied at the vertex to open the gate?

12. A masonry dam of trapezoidal cross-section, with one face vertical,
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has a thickness of 2 ft. at the top and 10 ft. at the bottom. It is 22 ft. high

and has a horizontal base. The vertical face is subjected to water pressure,

the water standing 15 ft. above the base. The weight of the masonry is

150 lbs. per cubic foot. Where will the resultant pressure intersect the base?

13. In Problem 12 what would be the depth of water when the resultant

pressure intersects the base at the outer edge of the middle third, or If ft.

from the middle of the base?

14. A vertical triangular surface has a horizontal base of 4 ft. and an

altitude of 9 ft., the vertex being below the base. If the center of pressure is

6 in. below the center of gravity, how far is the base below the water surface?

16. Water stands 40 ft. above the top of a vertical gate which is 6 ft.

square and weighs 3000 lbs. What vertical lift will be required to open the

gate if the coefficient of friction between the gate and the guides is 0.3?

16. On one side, water stands level with the top of a vertical, rectangular

gate 4 ft. wide and 6 ft. high, hinged at the top; on the other side water

stands 3 ft. below the top. What force applied at the bottom of the gate, at

an angle of 45° with the vertical, is required to open the gate?

17. A vertical, trapezoidal gate in the face of a dam has a horizontal

base 8 ft. below the water surface. The gate has a width of 6 ft. at the bottom

and 3 ft. at the top, and is 4 ft. high. Determine the total pressure on the

gate and the distance from the water surface to the center of pressxire.

18. Determine the total pressure and the position of the center of pressure

on a vertical, circular surface 3 ft. in diameter, the center of which is 4 ft.

below the water surface.

19. A 6-in. pipe line in which there is a 90° bend contains water under a

gage pressure of 450 lbs. per square inch. Assuming that the pressure is

uniform throughout the pipe and that the water is not in motion, find the total

longitudinal stress in joints at either end of the bend.



CHAPTER IV

IMMERSED AND FLOATING BODIES

30. Principle of Archimedes.—Any body immersed in a liquid

is subjected to a buoyant force equal to the weight of liquid dis-

placed. This is known as the principle of Archimedes. It may be

proved in the following manner.

The submerged body ABCD (Fig. 26) is referred to the coor-

dinate axes X, Y and Z. Consider the small horizontal prism

aia2, parallel to the Z-axis, to have a cross-sectional area dA.

The X-component of the normal force acting on ai must be iequal

and opposite Lo the same force

acting on 02, each being equal

to wh dA. There is, therefore,

no tendency for this prism to

move in a direction parallel to

the X-axis. Since the same

reasoning may be applied to

every other prism parallel to

aia2 it follows that there is no

tendency for the body as a

whole to move in this direc-

tion. The same reasoning ap-

plies to movement parallel to

the Z-axis or to any other axis

in a horizontal plane. If, therefore, there is any tendency for the

body to move it must be in a vertical direction.

Consider now the F-components of the hydrostatic pressures

acting on the ends of any vertical prism 6162 having a cross-

sectional area, dA, so small that the intensity of pressure on either

end of the prism may be considered constant. The resultant of

these pressures will be the difference between dPi, the verticalcom-

ponent of the normal pressure at 61 equal to whi dA, acting down-

ward and dP2, the corresponding force acting at 62, equal ix)wh2 dA,

38

Fig. 26.
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acting upward. The resultant pressure will be upward and equal

to wQi2— hi) dA; but ih2— hi) dA is the volume of the elementary

prism which, multiplied by w, gives the weight of the displaced

liquid. Since the entire body, ABCD, is made up of an infinite

number of such prisms, it follows that the resultant hydrostatic

pressure on the body will be a buoyant force equal in magnitude

to the weight of the displaced liquid.

If the weight of the body is greater than the buoyant force

of the liquid the body v/ill sink. On the other hand, if the weight

of the body is less than the buoyant force, the body will float

on the surface, displacing a volume of liquid having a weight equal

to that of the body.

31. Center of Buoyancy.—ABCD (Fig. 27) represents a floating

body. From the principles of the preceding article, the buoyant

force acting on any elementary area of the

submerged surface must be equal to the

weight of the vertical prism of displaced

liquid directly above it. Since the weight

of each prism is directly proportional to its

volume, the center of gravity of all these

buoyant forces, or the center of buoyancy, must coincide with the

center of gravity of the displaced liquid.

32. Stability of Floating Bodies.—Any floating body is sub-

jected to two systems of parallel forces; the downward force of

gravity acting on each of the particles that goes to make up the

body and the buoyant force of the liquid acting upward on the

various elements of the submerged surface.

In order that the body may be in equiUbrium the resultants

of these two systems of forces must be cohnear, equal and oppo-

site. Hence the center of buoyancy and the center of gravity

of the floating body must lie in the same vertical line.

Fig. 28 (a) shows the cross-section of a ship floating in an

upright position, the axis of symmetry being vertical. For this

position the center of buoj^ancy hes on the axis of symmetry at

Bo which is the center of gravity of the area ACL. The center of

gravity of the ship is assumed to be at G. If, from any cause, such

as wind or wave action, the ship is made to heel through an angle

e, as shown in Fig. 28 (b), the center of gravity of the ship and

cargo remaining unchanged, the center of buoyancy will shift

to a new position, B, which is the center of gravity of the area
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A'C'L. The buoyant force F, acting upward through B, and the

weight of the ship W, acting downward through G, constitute a

couple which resists further overturning and tends to restore the

ship to its original upright position. In all cases, if the vertical

line through the center of buoyancy intersects the incUned axis

of symmetry at a point M above the center of gravity, the two

forces F and W must produce a righting moment. If, however,

M lies below G an overturning moment is produced. The point M
is known as the metacenter and its distance, GM, from the center

of gravity of the ship, is termed the metacentric height. The value

of the metacentric height is a measure of the stability of the ship.

For angles of inclination not greater than 10° or 15° the

Fig. 28.

position of M does not change materially, and for small angles of

heel the metacentric height may be considered constant. For
greater inchnations, however, the metacentric height varies to a

greater extent with the angle of heel.

33. Determination of Metacentric Height.—Fig. 29 illus-

trates a ship having a displacement volume, V. When the ship is

tilted through the angle 6 the wedge AOA' emerges from the

water while the wedge C'OC is immersed. If the sides AA' and
C'C are parallel, these wedges must be similar and of equal volume,
V, since the same volume of water is displaced by the ship whether
in an inchned or upright position. The wedges therefore will

have the same length and the water lines AC and A'C must inter-

sect on the axis of symmetry at 0.

When the ship floats in an upright position a buoyant force
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F, equal to wv, acts upward through K, the center of gravity of

the wedge AOA'. In the inchned position this force no longer

acts, but an equal force F' acts at K', the center of gravity of the

wedge C'OC. It may be considered that a downward force F",

equal to F, has been introduced, the resultant of F" and F being

zero. A righting couple has therefore been introduced equal to

wvL, L being the horizontal distance between the centers of gravity

of the wedges.

Because of the shifting of the force F from K to K' the line of

action of the buoyant force W acting on the entire ship is shifted

from Bo to B, a horizontal distance S such that

wVS = wvL (1)

Consider now a small vertical prism of the wedge C'OC, at a

distance x from 0, having a cross-sectional area dA. The buoyant

force produced by this immersed prism is wx tan 6 dA, and the

moment of this force about is wx^ tan 6 dA.

The simi of all of these moments for both wedges must be equal

to wvL or

w tan 6 jx^ dA= wvL = wVS.

ButS=MBo sin 6, and for small angles, since the sine is very nearly

equal to the tangent,

Jx^ dA = V{MBo) = V{GM±GBo),
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and since fx^dA is the moment of inertia, /, of the water-Une

section about the longitudinal axis through 0,

GM=^±GBo, (2)

the sign in the last expression being positive if M falls below G
and negative if above.

Example.—Find the me-

tacentric height of the rect-

angular scow shown in Fig.

30.

The scow is 40 ft. long,

20 ft. wide and 8 ft. deep.

It has a draft of 5 ft. when

Pjq 3q floating in an upright posi-

tion. The center of gravity

of the scow is on the axis of symmetry, 1 ft. above the water

surface. The angle of heel is 10°.

The problem may be solved by substituting values in formula

(2), but the following method may be used conveniently for shapes

such that the center of buoyancy can be readily found.

Since the center of buoyancy, B, is at the center of gravity of

HA'C'F, its position may be found by taking moments about the

axes HF and EF. Before taking moments the distances KC
and KF must be determined.

KC = 20X tan 10° = 3. 52,

KF=5-^^3.2^.

Taking moments about HF

(5X20)BL'=(3.24X20X—^)+^X20(3.24+^V

BL' = 2.60ft.

Taking moments about EF

(5X20)SAr=(3.24X20Xy) + (^X20xf),

£A/' = 8.83ft.
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The distance of B from the inclined axis of symmetry is

5B' = 10-8. 83 = 1.17 ft.

From similar triangles

MB' A'K -,p, 1.17X20 . „_ ,,

-BB'^ClC ""' MB=-3^32- = 6.65ft.

The metacentric height is

GM = MB'+B'L-GL

= 6.65+2.60-6 = 3.25 ft.

The righting moment is

T^a; = 5X20X40X62.4X3.25sinl0°

= 140,900 ft.-lbs.

PROBLEMS

1. A rectangular scow 15 ft. by 32 ft., having vertical sides, weighs 40

tons (80,000 lbs.). What is its draft?

2. If a rectangular scow 18 ft. by 40 ft. has a draft of 5 ft. what is its

weight?

3. A cubic foot of ice (sp. gr.=0.90) floats freely in a vessel containing

water whose temperature is 32° F. When the ice melts, will the water level

in the vessel rise, lower or remain stationary? Explain why.

4. A ship of 4000 tons displacement floats with its axis of symmetry

vertical when a weight of 50 tons is midship. Moving the weight 10 ft. towards

one side of the deck causes a plumb bob, suspended at the end of a string 12 ft.

long, to move 9 in. Find the metacentric height.

5. A rectangular scow 30 ft. wide, 50 ft. long, and 12 ft. high has a draft

of 8 ft. Its center of gravity is 9 ft. above the bottom of the scow. If the

scow is tilted until one side is just submerged, determine:

(a) The position of the center of buoyancy.

(b) The metacentric height.

(c) The righting couple, or the overturning couple.

6. In Problem 5, what would be the height of the scow (all other data

remaining unchanged) if, with one side just submerged, the scow would be

in unstable equilibrium?

7. A box, 1 ft. square and 6 ft. high, has its upper end closed and lower

end open. By submerging it vertically with the open end down what is the

greatest weight the box can sustain without sinking?

8. In Problem 7, what weight would hold the box in equilibrium with the

upper end submerged 10 ft. below the surface?

9. A solid block of wood (sp. gr. =0.6) in the shape of a right cone has a
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base whose diameter is 12 in. and an altitude of 18 in. In what position

wiU this block float in water when it is in stable equilibrium?

10. A solid block of wood (sp. gr. =0.6) in the shape of a right cylinder

has a diameter of 12 in. and a length of 15 in. Determine the position in

which this block will float in water when in stable equilibrium.



CHAPTER V

RELATIVE EQUILIBRIUM OF LIQUIDS

34. Relative Equilibrium Defined.—In the preceding chapters

liquids have been assumed to be in equilibrium and at rest with

respect both to the earth and to the containing vessel. The
present chapter treats of the condition where every particle of a

liquid is at rest with respect to every other particle and to the con-

taining vessel, but the whole mass, including the vessel, has a

uniformly accelerated motion with respect to the earth. The
liquid is then in equilibrium and at rest with respect to the vessel,

but it is neither in equihbrium nor at rest with respect to the

earth. In this condition a liquid is said to be in relative equilibrium.

Since there is no motion of the liquid with respect to the vessel

and no movement between the water particles themselves there

can be no friction.

Hydrokinetics, which is treated in the following chapters,

deals with the condition in which water particles are in motion

with respect to the earth and also with respect to each other.

In this case the retarding effects of friction must be considered.

Relative equilibrium may be considered as an intermediate

state between hydrostatics and hydrokinetics.

Two cases of relative equilibrium wiU be dis-

cussed.

35. Vessel Moving with Constant Linear

Acceleration.—If a vessel partly filled with

any hquid moves horizontally along a straight

hne with a constant acceleration, j, the

surface of the Hquid wiU assume an angle 6

with the horizontal as shown in Fig. 31. To

determine the value of 9 for any value of j,

consider the forces acting on a small mass of

liquid, M, at any point on the surface.

This mass is moving with a constant horizontal acceleration, j,

and the force producing the acceleration is the resultant of all

45

Ji'
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the other forces acting upon the mass. These forces are the

force of gravity, W, acting vertically downward and the pres-

sure of all the contiguous particles of the liquid. The resultant,

F, of these forces must be normal to the free surface AB. Since

force equals mass times acceleration,

P=MjJ^, (1)

and from the figure

P = WtB.n6 (2)

Solving these two equations simultaneously,

tane= ^, (3)

which gives the slope that the surface, AB, will assume for any

constant acceleration of the vessel.

Since was assumed to be anywhere on the surface and the

values of j and g are the same for all points, it follows that tan d

is constant at all points on the surface or, in other words, AB
is a straight line.

The same value of 6 will hold for a vessel moving to the right

with a positive acceleration as for a vessel moving to the left

with a negative acceleration or a retardation.

To determine the intensity of pressure at any point h, at a

depth h below the free surface, consider the vertical forces acting

on a vertical prism ah (Fig. 31). Since there is no acceleration

vertically the only forces acting are atmospheric pressure at a,

gravity, and the upward pressure on the base of the prism at h.

Hence, if the cross-sectional area is dA,

'Pi,dA=whdA+'PadA, (4)

or

Pi=wh+pa, (5)

or, neglecting atmospheric pressure which acts throughout,

Pi=wh (6)

Therefore, in a body of Hquid moving with a horizontal accelera-

tion the relative pressure at any point is that due to the head of

liquid directly over the point, as in hydrostatics. In this case,

however, it is evident that all points of equal pressure lie in an
inclined plane parallel with the surface of the hquid.
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In equation (3) if j were zero, tan 6 would equal zero; or, in

other words, if the vessel were moving with a constant velocity

the surface of the liquid would be horizontal. Also if the accelera-

tion were vertically upward, the surface would obviously be
horizontal.

To determine the relative pressure at any point, 6, in a vessel

with an acceleration upward, consider the

forces acting on a vertical prism of liquid ab

of height h and cross-sectional area dA (Fig.

32). The force, P, producing the acceleration

is the resultant of aU the forces acting on
the prism, consisting of gravity equal to

wh dA, acting downward and the MiKe pres-

sure on the lower end of the filament at

b, equal to pt dA, acting upward. There-

fore

b'

I *

b

i

Fig. 32.

P= -pjjdA—whdA=Mj= j,

From which

p» =wh+wh- (7)
g

This shows that the intensity of

pressure at any point within a

liquid contained in a vessel hav-

ing an upward acceleration, j, is

greater than the static pressure

jby an amount equal to wh-.
g

Evidently, if the acceleration

were downward, the sign of the

last term in the above expression

would become negative, and if

3—g,Vi = ^- In other words, if

a vessel containing any liquid

falls freely in a vacuum, so as

not to be retarded by air friction,

the pressure will be zero at all

points throughout the vessel.

36. Vessel Rotating about a

Vertical Axis.—When the vessel shown in Fig: 33 is at rest, the

Fig. 33.
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surface of the liquid is horizontal and at mn. m'b'n' represents

the form of surface resulting from rotating the vessel with a con-

stant angular velocity w radians per second about its vertical

axis OY.

Consider the forces acting on a small mass of liquid, M, at a,

distant r from the axis OY.
Since this mass has a uniform circular motion it is subjected to

a centripetal force,

C=Mo}\ (8)

which force produces an acceleration directed toward the center

of rotation and is the resultant of all the other forces acting on the

mass. These other forces are the force of gravity, W = Mg,
acting vertically downward, and the pressure exerted by the

adjacent particles of the liquid. The resultant, F, of this liquid

pressure must be normal to the free surface of the liquid at a.

Designating by 6 the angle between the tangent at a and the

horizontal,

tan 9= ^-= .f= = -

dr W Mg
or

dh =—dr.

Q

which, when integrated becomes.

"'-w <«

The constant of Integration equals zero, since when r equals zero

h also equals zero.

Since h and r are the only variables this is the equation of a
parabola, and the Uquid surface is a paraboloid of revolution

about the F-axis. As the volume of a paraboloid is equal to one-

half that of the circumscribed cylinder and since the volume of

liquid within the vessel has not been changed,

h'h = W'n' = nn'.

The linear velocity at a is

v = ciir. (10)
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Substituting v for cor in equation (9)

" =
2?

(")

Expressed in words, this means that any point on the surface of the

hquid will rise above the elevation of greatest depression a height

equal to the velocity head (see Art. 43) at that point.

To determine the relative pressure at any point c at a depth h'

vertically below the surface at c' consider the vertical forces acting

on the prism cc', having a cross-sectional area dA. As this prism

has no vertical acceleration, 2?/ = and

PcdA=wh' dA
or

Pc = wh' (12)

That is, the relative pressure at any point is that due to the

head of Hquid directly over the point, as in hydrostatics. There-

fore the distribution of pressure on the bottom of the vessel is

represented graphically by the vertical ordinates to the curve

m'b'n'. It also follows that the total pressure on the sides of the

vessel is the same as though the vessel were filled to the level

m'n' and were not rotating.

PROBLEMS

1. A vessel containing water moves horizontally along a straight line with

a constant velocity of 10 ft. per second. What is the form of its water surface?

2. A vessel partly filled with water moves horizontally with a constant,

linear acceleration of 10 ft. per second per second. What is the form of its

water surface?

3. An open cylindrical vessel, 2 ft. in diameter, 3 ft. high and two-thirds

filled with water, rotates about its vertical axis with a constant speed of

90R.P.M. Determine:

(a) The depth of water at the center of the vessel.

(b) The total pressure on the cylindrical walls.

(c) The total pressure on the bottom of the vessel.

4. In Problem 3, what is the greatest speed in revolutions per minute

that the vessel can have without causing any water to spill over the sides?

5. Li Problem 3, what speed in revolutions per minute must the vessel

have in order that the depth at the center will be zero?

6. In Problem 3, what speed in revolutions per minute must the vessel

have in order that there may be no water within 6 in. of the vertical axis?
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7. If a closed cylindrical vessel, 2 ft. in diameter, 3 ft. high and completely

filled with water, rotates about its vertical axis with a speed of 240 R.P.M.,

determine the intensity of pressure at the following points:

(a) At the circumference, just under the cover.

(6) At the axis, just under the cover.

(c) At the circumference, on the bottom.

(d) At the axis, on the bottom.



CHAPTER VI

PRINCIPLES OF HYDROKINETICS

37. Introductory.—The principles relating to the behavior of

water or other liquids at rest are based upon certain definite laws

which hold rigidly in practice. In solving problems involving

these principles it is possible to proceed by purely rational methods,

the results obtained being free from any doubt or ambiguity.

Calculations are based upon a few natural principles which are

universally true and simple enough to permit of easy application.

In all problems ordinarily encountered in hydrostatics, after the

unit weight of the liquid has been determined, no other experi-

mental data are required.

A Hquid in motion, however, presents an entirely different

condition. Though the motion undoubtedly takes place in

accordance with fixed laws, the nature of these laws and the

influence of the surrounding conditions upon them are very

complex and probably incapable of being expressed in any exact

mathematical form.

Friction and viscosity affect the laws of hydrokinetics in a

varying degree for different Hquids. Since water is the most

common liquid with which the engineer has to deal and since, as a

result, more is known about the laws relating to the flow of this

liquid, the following treatise on hydrokinetics applies only to

water. The fundamental principles discussed hold true for all

liquids, but the working formulas would necessarily have to be

modified for each different kind of Hquid.

A clearer conception of the underlying principles of hydro-

kinetics is made possible by the assumption of certain ideal

conditions. This also permits of the estabhshment of a few

basic laws which may be expressed as fundamental formulas.

These assumed conditions, however, vary widely from those which

actually exist and working formulas based upon them must invari-

ably be modified by experimental coefficients.

51
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A formula with its empirical coefficients included, which

requires only that numerical values be affixed to the coefficients

to make it adaptable to the solution of problems, is referred to as

a base formula. Many formulas used in hydrokinetics differ so

widely from the fundamental form that they have little if any

claim to a rational basis.

During the last two centuries many hundreds of experiments

on flowing water have been performed. These experiments have

covered a wide range of conditions, and the data obtained from

them make possible the modern science of hydrokinetics.

38. Friction.—There can be no motion between two substances

in contact without friction. This principle applies to liquids and

gases as well as solids. Water flowing in any conduit encounters

friction with the surfaces with which it comes in contact. There

is also friction between the moving particles of water themselves,

commonly called viscosity (Art. 6). The free surface of water

flowing in an open channel encounters the resistance of the air

and also the greater resistance of the surface skin which results

from surface tension (Art. 7).

The amount of frictional resistance offered by any surface

increases with the degree of roughness of the surface. The
resistance which results from viscosity decreases as the tempera-

ture of the water increases. The influence of friction and viscosity

on the flow of water must be determined experimentally.

To overcome frictional resistance requires an expenditure of

energy. The expended energy is transformed into heat. After

being so transformed it cannot, through the ordinary processes

of nature, be reconverted into any of the useful forms of energy

contained in flowing water and is therefore often referred to as

lost energy.

39. Discharge.—The rate of flow or the volume of water passing

a cross-section of a stream in unit time is called the discharge.

The symbol Q will be used to designate the discharge in cubic

feet per second. Other units of discharge, such as cubic feet

per minute, gallons per minute or gallons per day are sometimes
employed for special purposes.

If a uniform velocity at all points in the cross-section of a
stream were possible there would be passing any cross-section every

second a prism of water having a base equal to the cross-sectional

area of the stream and a length equal to the velocity. Because,
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however, of the varying effects of friction and viscosity, the

different filaments of water move with different velocities. For
this reason it is common in hydraulics to deal with mean velocities.

If V is the mean velocity in feet per second past any cross-section,

and a is the cross-sectional area in square feet,

Q = av (1)

and

v='^ (2)

These simple formulas are of fundamental importance.

40. Steady Flow and Uniform Flow.—If the same quantity of

water passes any cross-section of a stream during equal successive

intervals of time the flow is said to be steady. If the quantity of

water passing any cross-section changes during successive intervals

of time the flow is said to be unsteady. If not otherwise stated,

the condition of steady flow will be assumed. The fundamental

principles and formulas based upon steady flow do not generally

hold for unsteady flow. Problems most commonly encountered

in practice deal only with steady flow.

If in any reach of a stream the velocity at every cross-section

is the same at any instant the flow is said to be uniform. This

condition requires a stream of uniform cross-section. If the cross-

section is not uniform throughout the reach, in the portions of the

reach where velocity changes occur, the flow is non-uniform.

Thus, uniform flow implies instantaneous similarity of condi-

tions at successive cross-sections, whereas steady flow involves

permanency of conditions at any particular cross-section.

41. Continuity of Discharge.—When, at any instant, the dis-

charge is the same past every cross-section, it is said to be continu-

ous, or there is continuity of discharge. The term continuity offlow

is also used to express this condition. Letting Q, a and v represent,

respectively, discharge, area and mean velocity with similar sub-

scripts appljang to the same cross-section, continuity of discharge

exists when
Q= aiVi = a2V2 = a3V3, etc (3)

Continuity of discharge may be illustrated by assuming water

to be turned into a canal. At first there wiU be a greater volume,

of water flowing near the entrance than at sections farther down.
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Under such conditions the discharge is not continuous. Ulti-

mately, however, if the supply of water is constant and assuming

no losses fi'om seepage or evaporation, there will be the same quan-

tity of water flowing past all sections of the canal, and the condi-

tion of continuity of discharge will exist in the entire canal regard-

less of whether or not all reaches of the canal have the same cross-

sectional area. In a pipe flowing full, even though the pipe is

made up of several diameters, the discharge is continuous.

42. Stream Line and Turbulent Motion.—Flowing water is

said to have stream-line motion if each particle follows the same

path as was followed by every preceding particle that occupied the

same position. If stream-line motion exists within a conduit

having parallel sides the paths of the water particles are parallel

to the sides of the conduit and to each other.

Water flows with stream-line motion only at very low velocities,

(a) (6;

Fig. 34.

excepting in very small pipes where such motion may exist at quite

high velocities (Art. 90). Under practically all conditions encoun-

tered in the field of engineering, the motion is turbulent, the water
particles moving without any regularity and not in accordance

with any known laws. In Fig. 34 (a) and {h) represent, respect-

ively, stream-line and turbulent motion.

Friction and viscosity affect the flow of water whether the

motion be stream line or turbulent, but the effects produced in the

two cases are in accordance with different laws (Art. 90).

43. Energy and Head.—Since the principles of energy are

applied in the derivation of fundamental hydraulic formulas, an
explanation of such principles as will be used is here introduced.

Energy is defined as ability to do work. Where the English

system of units is employed, both energy and work are measured
in foot-pounds. The two forms of energy commonly recognized

are kinetic energy and potential energy.

Kinetic energy is the ability of a mass to do work by virtue of its
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velocity. Where v is the velocity in feet per second and M, the

mass in gravitational units, is equal to W/g, the kinetic energy of

any mass is expressed by the equation

which reduces to — for a weight of unity. The expression —

is of the form

feet, per secondX feet per second_.
feet per second per second '

and it therefore represents a linear quantity expressed in feet.

It is the distance which a body must fall in a vacuum to acquire

the velocity v. When apphed to flowing water it is called the

velocity head. Although representing a linear quantity, the

velocity head is directly proportional to the kinetic energy of any

mass haAdng a velocity v and is equal to the kinetic energy of

one pound of any substance moving with a velocity v.

Potential energy is latent or potential ability to do work.

Water manifests this abiUty in two ways:

(a) By virtue of its position or elevation with respect to some

arbitrarily selected horizontal datum plane, considered in con-

nection with the action of gravity. This may be called energy

of position, energy of elevation or gravitational energy.

(6) By virtue of pressure produced by the action of gravity,

or by the application of some external force, on the water. This

may be called pressure energy.

Energy of position may be explained by considering a mass

haAong a weight ofW pounds whose elevation above any horizontal

datum plane is h feet. With respect to this plane the mass

has Wh foot-pounds of energy. A mass weighing one pound

will have h foot-pounds of energy. If a mass weighing one pound

is placed h feet below the datum plane, its energy with respect

to the plane will be — ^ foot-pounds, being negative because this

amount of energy will have to be exerted upon the mass to raise

it to the datimi plane against the action of gravity. Here again

the expression for energy, in this case h, represents a linear quan-

tity which is the elevation head of the mass, but it should be kept

clearly in mind that it is also the energy expressed in foot-poimds
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contained in one pound of water by virtue of its position with

respect to the datum plane.

It thus appears that the amount of energy of position possessed

by a mass depends upon the elevation of the datum plane. In

any particular problem, however, all masses should be referred

to the same plane. This gives the relative amounts of energy

contained in different masses or the relative amounts of energy

in the same mass in different positions, which is all that is usually

required.

The action of pressure energy is illustrated by the piston and

cylinder arrangement shown

in Fig. 35, which is operated

—p entirely by water under a gage

pressure of p pounds per

square foot. The area of the

piston is A square feet. The

cyhnder is supplied with water through the valve R and may be

emptied through the valve S.

At the beginning of the stroke the piston is at CD, the valve

S is closed and R is open. Water enters the cyhnder and slowly

drives the piston to the right against the force P- Neglecting

friction, the amount of work done on the piston while moving

through the distance I feet is Pl= pAl foot-pounds. If R is now
closed and S opened, again neglecting friction, the piston may be

moved back to its original position without any work being done

upon it. The quantity of water required to do the work, pAl foot-

pounds, is Al cubic feet and its weight is wAl pounds. The amount
of work done per pound of water is therefore

^—n= foot-pounds.
wAl w

Since this work is done entirely at the expense of pressure energy

and while the gage pressure is being reduced from p to zero, the

p
amount of pressure energy per pound of water is ~ foot-pounds.

p
It has been shown in Art. 17 that — represents pressure head

or a linear quantity. If pressure head is expressed in feet of

water column, it will also represent foot-pounds of energy per

pound of water as has been shown to be the case for velocity



BERNOULLI'S THEOREM 57

head and elevation head. There are other forms of energy, such

as heat energy and electrical energy, which have no direct bearing

on the laws governing flowing water.

The three forms of energy which water may have are illus-

trated in Fig. 36. At A water is moving with a velocity v.

The kinetic energy of a pound of water at A is v^/'ig, the pressure

energy is

2
w
= h

and the energy of position referred to the datum plane MN is z.

Thus, with respect to the plane MN the total energy per pound of

water at any point A, expressed in foot-pounds, is

2g w (5)
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the frictional loss that occurs will be extremely small and for the

present it will be ignored. Every particle of water passing the

section be will, a little later, pass the section de and no water will

pass the section de which did not previously pass be.

Consider now the forces acting on this filament of water. On
the section be whose area is oi there is a normal pressure in the direc-

tion of flow of intensity pi producing motion. On the section de

whose area is a2 there is a normal intensity of pressure pz parallel

with the direction of flow and resisting motion. On the lateral

surface of the filament, indicated by the lines bd and ee, there

is a system of forces acting normal to the direction of motion,

which have no effect on the fiow and can therefore be neglected.

The force of gravity, equal to the weight of the filament, acts

downward. The work performed on the filament by the three

forces will now be investigated.

Consider that in the time dt the particles of water at be move
to b'c' with a velocity vi. In the same time interval the particles

at de move to d'e' with a velocity V2. Since there is continuity of

fiow,

aiVidt— azVzdt.

The work, Gi, done by the force acting on the section be in the

time dt is the product of the total force and the distance through

which it acts, or

Gi= piai!;id< foot-pounds (6)

Similarly the work done on the section de is

(t2 = — p2a2V2dt foot-pounds, .... (7)

being negative because p2 is opposite in sense to pi and resists

motion.

The work done by gravity on the entire mass in moving from
the position bcde to b'c'd'e' is the same as though bdb'c' were moved
to the position ded'e' and the mass b'e'de were left undisturbed.

The force of gravity acting on the mass bd)'c' is equal to the volume
a\v\dt times the unit weight w. If z\ and Z2 represent, respectively,

the elevations of the centers of gravity of bdt'c' and ded'e' above
the datum plane MN, the distance through which the force of
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gravity would act on the mass bcb'c' in moving it to the position

ded'e' is zi— Z2 and the work done by gravity is

G3=waiVi,dt{zi— Z2)ioot-po\inds. ... (8)

The resultant gain in kinetic energy is

Mv2^ Mvi^ wajVidt,

2g
-(V2^-Vi^) (9)

From fundamental principles of mechanics, the total amount of

work done on any mass by any number of forces is equal to the

resultant gain in kinetic energy. Therefore from equations (6),

(7), (8) and (9).

piaiVidt—p2a2V2dt-\-waiVidt{zi—Z2) =—

^

(^2^— J'l^). . . (10)

Dividing through by waividt and transferring, and remembering

that aivi =a2V2, there results

^+El+,,=|!+^+,, (11)
2g w 2g ID

This is known as Bernoulli's equation. It is the mathe-

matical expression of Bernoulli's theorem which is in reality the

law of conservation of energy appUed to flowing water. It may
be stated as follows:

Neglecting friction, the total head, or the total amount of

energy per pound of water, is the same at every point in the path

of flow.

Water invariably suffers a loss of energy through friction in

flowing from one point to another. If the direction of flow is

from point 1 to point 2, the total energy at 2 must be less than at 1.

In order to make equation (11) balance, a quantity, hf, equal to

the loss of energy, or what is equivalent, the loss of head due to

friction between the two points, must be added to the right-hand

side of the equation. Including the loss of head due to friction

Bernoulli's equation becomes

|!+Hi+,,=|!+P5+,34-,,
(12)

2g w 2g w

This equation is the basis of all rational formulas used in

hydrokinetics. It is the foundation of the science.
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45. Application of Bernoulli's Theorem to Hydrostatics.—
Although in hydrostatics it is not necessary to make use of Ber-

noulli's equation, it is interesting to note that it applies to water at

rest as well as to water in motion. The points 1 and 2 (Fig. 38)

are hi and fe, respectively, below the free surface of a Hquid at

rest and zi and Z2 above the horizontal plane MN. The liquid

being at rest, «i and V2 equal zero, and, since without velocity there

can be no friction, h/ is zero. Therefore equation (12) reduces to

or, transposing,

From the figure

w w

= Z2— Zi.W W

(13)

(14)

Z2— Zi = hi — h2.

M

Fig. 38. FiQ. 39.

Substituting this value of Z2— zi, equation (14) may be written

Pi-p2 = w(hi-h2), (15)

which is the same as equation (3), page 11.

46. Bernoulli's Theorem in Practice.—Bernoulh's theorem

(Art. 44) is based upon the assumptions of steady flow, stream-line

motion and continuity of discharge. Under ordinary conditions

water flows with turbulent motion (Art. 90) whereas stream-line

motion is assumed in applying Bernoulli's theorem. The effect

of turbulence is to increase the losses and therefore this additional

loss is included with the loss of head due to friction and no further

correction is necessary.

It is permissible to write Bernoulli's equation between any

two points on any assumed line of flow provided it is known that

there is flow between the two points. Thus, in Fig. 39, which
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represents water discharging from a reservoir through a pipe,

BernoulU's equation may be written between points A and B.

The relation obtained from this equation is then assumed to hold

for each of the filaments in the pipe.

47. Venturi Meter.—An illustration of the practical use of

Bernoulli's equation is provided by the Venturi meter. This

instrument, which is used for measuring the discharge through

pipes, was invented by Clemens Herschel and named by him in

honor of the original discoverer of the principle involved. A
Venturi meter set in an inclined position is illustrated in Fig. 40.

Fig. 40.—Venturi meter.

It consists of a converging section of pipe BC and a longer

diverging section T)E, the smaller ends being connected by a

cylindrical section CD, called the throat. The larger ends B and

E, termed the inlet and outlet, respectively, have the same diameter

as the pipe Hne in which the meter is to be installed.

Let a\,V\, pi and z\ represent the area, velocity, pressure and

elevation, respectively, at point 1 in the inlet. Also let 02, t'2,

P2 and Z2 represent the corresponding quantities at point 2 in the

throat. Writing BernouUi's equation between points 1 and 2,

neglecting friction,

5)^2 fn^ J)n2 ,Y\n

(16)
^i'+Pi+,,=^+2H+,,
2(7 w 2g w
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If piezometer tubes are connected at the inlet and throat, the

heights of water in these tubes afford a measure of the pressure

energy at the two points. Since the relative elevations of points

1 and 2 are also known, the only unknowns in equation (16) are

vi and V2. For any given diameters of throat and inlet the corre-

sponding areas can be found, and since

Q = aiVi = a2V2,

V2 can be expressed in terms of vi, and substituting this equivalent

value in equation (16) leaves vi as the only unknown. Solving

the equation for vi and multiplying the result by ai gives the

discharge through the pipe.

For a given discharge the difference between elevations of water

surfaces in the two piezometers will be the same regardless of

Fkj. 41.

whether the meter is horizontal or inclined. If the meter is

assumed to be rotated in a vertical plane about point 2 until it

is in a horizontal position, the rate of discharge through the

meter being unchanged, the total amount of energy contained

in the water at the inlet must be the same as before the meter was

rotated. Since Vi has remained constant —+Zi must also have
w

remained constant. The same reasoning applies to point 2, and
hence the difference in elevation of the water levels in the two
piezometers is constant for all angles of inclination.

Venturi meters are usually installed in an approximately
horizontal position.

Example.—A Venturi meter having a throat 4 in. in diameter
is installed in a 12-in. pipe line. A mercury U-tube connected as

shown in Fig. 41 shows a difference in height of mercury columns
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of 9 in., the remainder of the tube being filled with water. Find

the rate of discharge, Q, in cubic feet per second, neglecting

friction.

Writing Bernoulli's equation between points 1 and 2

^+21+.,=|!+PH+,,
(16)

2g w 2g w

Since the angle of inclination will not affect the result, the meter

can be assumed to be horizontal. Then zi and Z2 cancel and

equation (16) becomes

2g 2g w w ^ ^

Pl_£?=9xi3.6-^= 9.45.
w w 12 12

From the given data

The areas of circles being proportional to the squares of their

diameters,

a2~ 4?
~^'

and since the flow is continuous

Q = aiVi=a2V2 and i'2 = -5^1=9^1.

Substituting these results in equation (17) and reducing

"" 2

- = 9.45
2<7

„ 9.45X64.32 _ _
''=

80
=^-6

wi = 2 . 76 ft. per second.

Q = aivi=~^X 2 . 76 = 2 . 17 cu. ft. per second.

The pressure in the throat of a Venturi meter is always much
less than at the entrance. This may be seen from the following

equation for a horizontal meter:

2g w 2g w ^ '
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Since the velocity increases from point 1 to point 2 there must be

a corresponding decrease in pressure, otherwise there would be an

increase in the total amount of energy per pound of water.

In the practical use of the Venturi meter the loss of head due to

friction, though small, should not be neglected.

Consider first the theoretical equation for the horizontal meter:

2g^w 2g^w ^^"^

or

El^^Vi^m^h,
(20)

2g w w

h being the difference in pressure at points 1 and 2, measured in

feet of water column. Since

"-1"^ (21)

substituting, (20) becomes

\2
,2

= h (22)

{%)'-'-"'

2g

This expression reduces to

..- It:^- (23)

(S)'-

Since equation (23) does not include the loss of energy (or head)

resulting from friction, it gives a greater velocity than is ever

obtained. In order to correct the formula for friction loss an
empirical coefficient, K, is applied to it. The discharge through
the meter is given by the formula

Q = aivi (24)

Substituting the value of vi given in equation (23) and including

the coefficient K, the formula for discharge through a Venturi
meter becomes

«=^^«i /^^ (25)w 1
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The value of K is affected by the design of the meter and also by
the degree of roughness of its inner surface. It has been found

from experiments that K usually lies between 0.97 and 0.99.

48. Pitot Tube.—Fig. 42 illustrates several tubes immersed

vertically in a stream of flowing water. The upper ends of the

tubes are open and exposed to the atmosphere. At the same

depth, hd, there is an opening in each tube which allows free

communication between the tube and water in the stream. The
velocity of the water at depth ha is v.

Tubes (a), (6) and (c) are similar, being bent through an angle

of 90°, the tip of each tube being open. When the open end of

such a tube is directed against the current as shown by (a), the

velocity of the water causes water to rise in the tube a distance

(a)

:w

(6) CO (d) («)

Fig. 42.

h above the free surface of the stream. It is shown later in this

article that h is equal to the head due to the velocity v.

If the same tube is placed with the open end directed down-

stream as in (6) the pressure at the opening is less than ha and the

water surface in the tube is a certain distance, hi, below the

surface of the stream. A similar condition exists when the tube

is placed with its lower leg transverse to the stream as shown in (c).

In this case, according to experiments by Darcy, the vertical

distance, /12, of the water surface in the tube below the water

surface of the stream is a little greater than hi. Similarly for (d),

which is a straight tube open at each end, there is a depression,

hz, of the water column in the tube. The tube (e) is the same as

(a) except that the tip of the tube is closed and there is a small

hole on each side of the lower leg. If this tube is held with the
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lower leg parallel to the direction of flow the water surface in the

tube remains at about the same elevation as the water surface of

the stream, h], hz and hs are all less than the velocity head,

but directly proportional to it. From experiments by Darcy the

following approximate values of hi and /12 were obtained;

fti = 0.43f and ^12 = 0.68;
2ff-

The conditions of flow affecting the height of water column in

tube (d) are similar to those encountered when piezometer tubes

(Art. 21) extend through the conduit walls into the stream.

Piezometer tubes are designed to measure pressure head only and

in order that their readings may be affected a minimum amount
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upstream limit of which is not definitely known, but which may
be represented by some line such as abc or ab'c or by the interme-

diate line ab"c. Since stream-line motion is' assumed, there must

be some such surface of quiescent water on the adjacent upstream

side of which particles of water will be moving with an extremely

low velocity.

Consider a particle of water flowing from dto e, d being on the

axis of the tube far enough upstream so that the velocity is not

affected by the presence of the tube, e being on the upstream sur-

face of the quiescent water above referred to and at the same

elevation as d. As this particle flows from d to e its velocity is

gradually retarded from Va to practically zero at e. The velocity

head at e may therefore be called zero.

Based on the above assumptions and neglecting friction,

Bernoulli's equation between the points d and e may be written

From Fig. 43

^+^+0 = 0+2^+0 (26)
2g w w

^ = he and ^= hi,w w

since from the figure he— ha= h

w w

Substituting in equation (26)

'- = h (27)
vl
29

Since d is a point at any depth, the general expression may be

written

^ = 1' (28)

or

v = V2gh: (29)

Hence the velocity head at d is transformed into pressure head

at e and because of this increased pressure inside the tube a column

of water wiU be maintained whose height is j- above the water

level outside.
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Pitot tubes of the type shown in Fig. 43 are not practicable

for measuring velocities because of the difficulty of determining

the height of the water surface in the tube above the surface of the

stream. In order to overcome this difficulty Darcy used an

instrument with two L-shaped tubes as shown in Fig. 45. One
tube is directed upstream and the other downstream, the two tubes

being joined at their upper ends to a single tube connected with

an air pump and provided with a

stopcock at A. By opening the

stopcock and pumping some of

the air from the tubes both water

columns are raised an equal

amount, since the pressure on

their surfaces is reduced equally.

p
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conduit flowing under pressure, two tubes are absolutely essential,

one measuring both pressure and velocity and the other measuring

pressure only.

PROBLEMS

1. The diameter ot a pipe changes gradually from 6 in. at 4 to 18 in. at B.

A is 15 ft. lower than B. If the pressure at A is 10 lbs. per square inch and
at B, 7 lbs. per square inch when there are 5.0 cu. ft. per second flowing,

determine:

(a) The direction of flow.

(6) The frictional loss between the two points.

2. If in Problem 1 the direction of flow is reversed, determine the pressure

at A if all other factors, including the frictional loss, remain the same.

3. In Problem 1, determine the diameter of pipe at B in order that the

pressure at that point will also be 10 lbs. per square inch, all other factors

remaining constant.

4. Determine the discharge in Problem 1, assuming no frictional loss, all

other conditions remaining as stated.

6. What would be the difference in pressure in pounds per square inch

between A and B, Problem 1, if there were 6.2 cu. ft. per second flowing,

neglecting friction.

6. A siphon having a diameter of 6 in. throughout, discharges from a

reservoir. A, into the air at B. The summit of the siphon is 6 ft. above the

water surface in A and 20 ft. above B. If there is a loss of 3 ft. head between

A and the summit and 2 ft. between the summit and B, what is the absolute

pressure at the summit in pounds per square inch? Also determine the

rate of discharge in cubic feet per second and in gallons per day.

7. In Problem 6 determine the absolute pressure in pounds per square

inch at the summit and the discharge in cubic feet per second if the diameter

at the summit is 5 in. and at the outlet, 6 in., all other data remaining the same.

8. A flaring tube discharges water from a reservoir at a depth of 36 ft.

below the water surface. The diameter gradually increases from 6 in. at the

throat to 9 in. at the outlet. Neglecting friction determine the maximum
possible rate of discharge in cubic feet per second through this tube. What is

the corresponding pressm-e at the throat?

9. In Problem 8 determine the maximum possible diameter at the outlet

at which the tube will flow fuU.

10. A jet of water is directed vertically upward. At A its diameter is

3 in. and its velocity is 30 ft. per second. Neglecting air friction, determine

its diameter at a point 10 ft. above A.

11. Water is dehvered by a scoop from a track tank to a locomotive tender

that has a speed of 20 mi. per hour. If the entrance to the tender is 7 ft.

above the level of the track tank and 3 ft. of head is lost in friction at what

velocity wiU the water enter the tender?

12. In Problem 11 what is the lowest possible speed of the train at which

water will be delivered to the tender?
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13. A Venturi meter having a diameter of 6 in. at the throat is installed

in an 18 in. water main. In a differential gage partly filled with mercury

(the remainder of the tube being filled with water) and connected with the

meter at the throat and inlet, the mercury column stands 15 in. higher in one

leg than in the other. Neglecting friction, what is the discharge through the

meter in cubic feet per second?

14. In Problem 13 what is the discharge if there is 1 ft. of head lost between

the inlet and the throat, all other conditions remaining the same.

16. In Problem 13 what would be the diiTerence in the level of the mercury

columns if the discharge is 6.0 cu. ft. per second and there is 1 ft. of head

lost between the inlet and throat?

16. A Venturi meter is installed in a 12-in. water main. If the gage

pressure at the meter inlet is 8 lbs. per square inch when the discharge is 3.0

cu. ft. per second determine the diameter of the throat if the pressure at that

point is atmospheric. Neglect friction.

17. A flaring tube discharges water from a vessel at a point 10 ft. below

the surface on which the gage pressure is 8.5 lbs. per square inch. If the

diameter of the throat is 4 in., at which point the absolute pressure is 10 lbs.

per square inch, determine the discharge in cubic feet per second, neglecting

friction.

18. In Problem 17 what is the diameter of the tube at the discharge end?



CHAPTER VII

FLOW OF WATER THROUGH ORIFICES AND TUBES

49. Description and Definitions.—As commonly understood in

hydraulics, an orifice is an opening with a closed perimeter and of

regular form through which water flows. If the perimeter is not

closed or if the opening flows only partiaUy full the orifice becomes

a weir (Art. 68). An orifice with prolonged sides, such as a piece

of pipe two or three diameters in length set in the side of a reservoir,

is caUed a tube. An orifice in a thick wall has the hydraulic proper-

ties of a tube. Orifices may be circular, square, rectangular or of

any other regular shape.

The stream of water which issues from an orifice is termed the

jet. An orifice with a sharp upstream edge so formed that water

in passing touches only this edge is caUed a sharp-edged orifice.

The term velocity of approach as applied to orifices means the mean
velocity of the water in a channel leading up to an orifice. The
portion of the channel where the velocity

of approach is considered to occur is

designated the channel of approach. An
orifice is spoken of as a vertical or hori-

zontal orifice depending upon whether it

hes in a vertical or horizontal plane.

50. Characteristics of the Jet.—Fig.

47 represents a sharp-edged, circular

orifice. The water particles approach

the oriflce in converging directions as

shown by the paths in the figure.

Because of the inertia of those particles

whose velocities have components par-

allel to the plane of the orifice, it is

not possible to make abrupt changes in

their directions the instant they leave

the orifice and they therefore continue to move in curvilinear

71

Fig. 47.—Sharp-edged

orifice.
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paths, thus causing the jet to contract for some distance beyond

the orifice. This phenomenon of contraction is referred to as the

contraction of the jet and the section where contraction ceases is

called the vena contractu. The vena contracta has been found to be

at a distance equal to about one-half the diameter of the orifice

from the plane of the orifice, at a in figure.

Beyond the vena contracta the cross-sectional area of the jet

does not undergo any change excepting insofar as it is affected by

gravity. If the direction of the jet is vertically upward (Fig. 51),

or if it has an upward component, the force of gravity retards its

velocity and thus increases its cross-sectional area; and, con-

versely, if the direction of the jet has a downward component,

gravity increases its velocity and decreases its cross-sectional

area.

If a jet discharges into the air the pressure within the jet at

its vena contracta and beyond is atmospheric pressure. This

may be seen by investigating the conditions which wUl "result

from assuming pressures greater or less than atmospheric pressure.

If, for example, the pressure within a cross-section is assumed to

be greater than atmospheric pressure, there will be an unbalanced

pressure along every radius of the section—that is, the pressure

at the center will be greater than at the circumference. Since

water is incapable of resisting tensile stress this would cause the

jet to expand. In a similar manner if the internal pressure is

assumed to be less than atmospheric, since water unconfined is

incapable of resisting a compressive force, the unbalanced pressure

will produce an acceleration and therefore a fiurther contraction.

Since neither expansion nor contraction occurs, it follows that the

pressure throughout the vena contracta must be atmospheric

pressure.

Between the plane of the orifice and the vena contracta the

pressure within the jet is greater than atmospheric pressure

because of the centripetal force necessary to change the direction

of motion of the particles. That this pressure must be greater

than atmospheric can easily be proved by writing Bernoulli's

equation between a water particle in the jet back of the vena
contracta and another particle in the vena contracta.

The form assumed by jets issuing from orifices of different

shapes presents an interesting phenomenon. The cross-section

of the jet is similar to the shape of the orifice until the vena con-
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D O *

tracta is reached. Fig. 48 shows various cross-sections of jets

issuing from square, triangular and eUiptical orifices. The left-

hand diagram in each case is a

cross-section of the jet near the

vena contracta. The following

diagrams are cross-sections at suc-

cessively greater distances from the

orifice. This phenomenon, which

is-common to all shapes of orifices

excepting circular orifices, is known

as the inversion of the jet. After

passing through the fourth stage (J (^ C«_^

shown in the figure the jet reverts

to its original form and continues

to pass through the cycle of changes

described above as long as it flows freely or is not broken up by

wind or air friction.

51. Fundamental Orifice Formula.—Fig. 49 represents the

general case of water discharging through an orifice. In the

A o ^ Y

Fig. 48.—Form of jet from square,

triangular and elliptical orifices.

A\^^S^'s\^'s^^VVVVSSS^V.^^^

N.\\\\v\\\vvv\\\\\\''^ .

Fig. 49.—Discharge from orifice.

derivation of the fundamental formula it will be assumed that the

water flows without friction and also that there is no contraction

of the jet and therefore no pressure within the jet in the plane

of the orifice. In order to write a general expression applicable

to all filaments, it will be necessary to make the further assump-

tion that all of the water particles in a cross-section of the

channel of approach flow with the same velocity.

There are two chambers, A and B, the gas pressure in chamber

A being px and in chamber B being pa, the relation of p^ to p^
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being such that water will flow from chamber A to chamber B.

The flowing water may be considered to be made up of filaments

of which mn is one, m being a point in the water in chamber A
and n a point in the jet in the plane of the orifice. The filament

passes through the orifice at a distance h below the surface of the

water. The point ?w is at a distance hm below the water surface

and at a distance z above n. Vm is the velocity at m and Vn is

the velocity at n. BernouUi's equation may be written between

the points m and n as follows

:

'«mj_l. _i_PA ,,_'"'? j_Pb ,^^

and since hm-'rz= h

h=f-'4.+2^-2± (2)
2g 2g w w

and

-WW^) ("

These formulas are general expressions of relation between velocity

and head for any filament.

Since the filaments at different elevations discharge through

a vertical orifice under different heads their velocities are not

the same. Where, however, the head is large in comparison with

the height of the opening, the mean velocity of the jet may be

taken as the velocity due to the mean head. The theoretical mean
velocity thus obtained may be represented by the symbol Vt.

Introducing also the assumption that all of the water particles

in a cross-section of the channel of approach flow with the same

velocity, V; Vn and Vm in formulas (2) and (3) may be replaced,

respectively, by Vt and V, which gives

and

From the definition (Art. 49) V is the velocity of approach.

The condition most commonly encountered is that illustrated
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in Fig. 50, where the surface of the water and the jet are each

exposed to the atmosphere. In this case Pa = Pa = atmospheric

pressure and formulas (4) and (5) reduce, respectively, to

and
2<7

Vt

=V^K'^+i)-

(6)

(7)

If the cross-sectional area

of the reservoir or chan-

nel leading up to the

orifice is large in com-

parison with the area of

the orifice the velocity of

approach, Y, may be

called zero and equations

(6) and (7) reduce, respect-

ively, to

Fig. 50.—Orifice with water surface and

jet subjected to equal pressures.

/l =

and

?1l

2?
(8)

v, = y/2gh (9)

These formulas express the theoretical relation between head and

velocity for an orifice discharging from a relatively large body of

water whose surface is subjected

to the same pressure as the jet.

It is under this condition that

discharge from orifices ordinarily

occurs and the above formulas

are the ones most commonly
used. Since these formulas also

express the relation between

potential head and velocity head

(Art. 43) they have a wide appli-

cation in hydraulics.

Formula (9) is also the formula

for the velocity acquired by a

body falling a distance h through space. The theoretical velocity

of water flowing through an orifice is therefore the velocity acquired

'y//^^^^^^,>^^^^^/^/J^///y'//J^/// J/////y/////,

Fig. 51.—Horizontal orifice.
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by a body falling freely in vacuo through a distance equal to the

head on the orifice. This principle, discovered by TorricelU in

1644, is known as TorricelU's theorem. Fig. 51 illustrates a hori-

zontal orifice discharging under a head h. According to Torri-

celU's theorem the jet should rise to a height h, but experiments

show that the actual height to which the jet rises is slightly less

than h. The discrepancy is due to the retarding effects of friction

and viscosity. This matter is discussed more fully in the following

article.

52. Orifice Coefficients.—The assumptions which were made

in the derivation of formula (5) may be summarized briefly as

follows

:

(a) All water particles in a cross-section of the channel of

approach flow with the same velocity.

(6) There is no contraction of the jet.

(c) The water flows without friction.

Since these conditions do not in reality exist, it is necessary

to modify the derived formulas to make them applicable to actual

conditions. To accomplish this, three empirical coefficients are

applied to formula (5), there being one coefficient to correct for

the difference between the assumed conditions and the actual con-

ditions for each of the above assumptions. The method of cor-

recting for each assumption will be discussed in the order given

above.

(a) Correction for non-uniformity of velocity m cross-section of

channel of approach. The effect of the variation in velocity in a

cross-section of the channel of approach—that is, the variation

in the velocity with which the water particles in the different

filaments approach the orifice, is similar to the effect of this condi-

tion on the discharge over weirs. The matter being of relatively

much greater importance in this connection is taken up under
weirs and will not be discussed here. (See Art. 72 (a).)

The commonly accepted method of modifying formula (5) so

as to have it include this correction is to apply a coefficient a to

the term — . The value of a has not been determined for orifices.

It varies with the distribution of velocities in the channel of ap-
proach and is always greater than unity. With the coefficient
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a included, calling v' the velocity after the correction has been

appUed, formula (5) becomes

.' =^2,(*+.|+I^) (10,

(b) Correction for contraction.—The ratio of the cross-sectional

area of the jet at the vena contracta to the area of the orifice is

called the coefficient of contraction. Thus, if a' and a are, respect-

ively, the cross-sectional area of the jet at the vena contracta

and the area of the orifice and Cc is the coefficient of contraction,

a'
Cc =— or a' = Coa.

a

If V is the actual mean velocity in the vena contracta the discharge

through the orifice is

Q= a'v = Ccav (11)

The mean value of Cc is about 0.62. It varies slightly with the

head and size of orifice.

(c) Correction for friction.—The velocity of the jet suffers a

retardation due to the combined effects of friction and viscosity.

The ratio of the actual mean velocity, v, to the velocity, v', which

would exist without friction, has been termed the coefficient of

velocity, but it might more properly be called the coefficient of

friction. Designating the coefficient of velocity by the sumbol Co

C„= -7 or v = Cy.
V

The average value of Cv for a sharp-edged orifice is about 0.98.

Substituting the value of v' given in formula (10), the general

formula for mean velocity of a jet issuing from an orifice, with the

two coefficients to correct, respectively, for friction and the

assumption of uniform velocity in a cross-section of the channel

of approach, becomes

v = C^2g(
2?

If the pressures p^ and ps are equal

h+,Yl+2A=vA (12)

> = C.yfg(^^+%) (13)
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If the velocity of approach is so small that it can be called zero

without introducing an appreciable error

v = Cy2gh (14)

Substituting the value of v given by formula (12) in (11)

the general formula for discharge through an orifice with the three

corrective coefficients becomes

Q =aC„a^23(^+a^%2^). . . . (15)

It is usual to combine CcCv into a single coefficient, C, called

the coefficient of discharge. Substituting C for CcCv, the general

formula for discharge is

Q^Ca^2g(h+.^+2^) (16)

If the pressures Pa and pn are equal

Q = Ca^2g(h+oc~j (17)

If the velocity of approach V is so small that it can be considered

to equal zero

Q = CaV2^ (18)

As orifices are ordinarily used, the pressures Pa and pb are equal

and the velocity of approach is so small that it may be neglected

without appreciable error. Formula (18) is therefore recognized

as the common discharge formula for an orifice.

In the remainder of this chapter, if not otherwise specified, it

will be assumed that the pressure on the water surface is the same
as the pressure on the jet, and the velocity of approach will be
considered to be so small as to be negligible. Formulas (14)

and (18) then become the respective formulas for mean velocity

and discharge.

Numerical values of Cc and C„ may be obtained experimentally
but an accurate determination is extremely difficult. Cc may be
obtained approximately by measuring the diameters of the vena
contracta and orifice with calipers, the coeflacient of contraction
being equal to the ratio of the squares of their respective
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Coefficients op Discharge
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diameters. A Pitot tube may be used to determine approximately

velocities in the vena contracta.

The coefficient of discharge may be obtained with great

accuracy by measuring the quantity of water flowing from an

orifice of known dimensions in a given time and determining the

ratio between this discharge and the theoretical discharge. Since

in practice it is usually the discharge from orifices that is required,

it is the coefficient of discharge that is of greatest value to en-

gineers. An average value of the coefficient of discharge is about

0.60. It is not a constant, but varies with the head and also with

the shape and size of the opening. On page 79 are tables of

values of C for circular and square orifices taken from Hamilton
Smith's Hydraulics. Sharp-edged orifices provide an accurate

means of measuring small rates of discharge.

53. Algebraic Transformation of Formula with Velocity of

Approach Correction.—The fundamental orifice formula with

velocity of approach correction as derived in Art. 52 is

Q =Ca^^g{h+^ (17)

By definition V= Q/A where A is the cross-sectional area of the

stream in the channel of approach. Substituting this value of V
and reducing, equation (17) becomes

^_ CaV2gh

i-
(19)

^C^J,

Expanding the denominator by the binomial theorem gives a
diminishing series and dropping all terms excepting the first

two since they will be very small quantities, the formula may be
expressed in the approximately equivalent form

Q =CaV2^(l+^-g) (20)

The term within the parenthesis is the velocity of approach
corrective factor. It becomes unity when the ratio of the orifice

to the cross-sectional area of the stream in the channel of approach
is so small that it may be considered zero. Where a correction
for velocity of approach is required, formula (20) will be found
more convenient than formula (17).
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54. Head Lost in an Orifice.—Consider water to be discharging

from an orifice under a head h (Fig. 52). Because of friction, the

velocity of discharge will be less than V2gh or, from formula (14),

page 78

v = C„V2ih (14)

The head producing discharge

is therefore, -—

—

h-J-f. (19)

That is, h is the total head,

including the lost head. The

Fig. 52.—Sharp-edged orifice. Fig. 53.—Path of jet.

head that is not lost is the velocity head due to the actual

velocity v. Therefore,

Lost head = Total head— velocity head or, placing the symbol

ho for lost head,

1 iP v^ / I \iP

For a sharp-edged orifice, since C„= . 98, /lo = . 041 ^.

Since v = C^i, formula (22) reduces to

ho = (l-CJ')h, (23)

and substituting the value of Ct for a sharp-edged orifice

ho = 0.040h.

Formulas (22) and (23) are fundamental and are applicable

to any orifice or tube whose coefiicient of velocity is known.
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55. Path of Jet.—When water issues from an orifice the

direction of the jet is at first normal to the plane of the orifice

but, for orifices not in a horizontal plane, the force of gravity

causes it immediately to begin to curve downward. Let x (Fig.

53) be the abscissa and y the ordinate of any point in the path

of a jet discharging from a vertical orifice. The space x will be

described uniformly in a certain time t and if v is the velocity

with which water leaves the orifice

x = vt.

The jet has a downward acceleration which conforms to the law of

falling bodies and therefore

Eliminating t between the two equations

9
x^ =—y, (24)

which is the equation of a parabola with its vertex at the orifice.

Since by formula (14), page 78,

v = CvV2gh,

equation (24) may also be written

a;2 = 4C/%. .

(14)

(25)

III

This formula indicates an experimental method of obtaining C„;

x, y and h may be measured and substituted in the formula and

Cv may be computed

56. Orifices under Low Heads.—Where the head on a vertical

orifice is small in comparison with the height of the orifice there is

-^
_—-__^a.^^^^^ theoretically an appreciable dif-

ference between the discharge

obtained by assuming the mean
velocity to be that due to the

mean head and the discharge ob-

tained by taking into considera-

tion the variation in head. The

Fig. 54.-Rectangular orifice,
^'^^^^ ^°™^1^ f^I" octangular

orifices is derived as follows:

Fig. 54 shows a rectangular orifice of width L and height D,

7i,

j/'^g
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the water surface and jet being each subjected to atmospheric

pressure, hi and /12 are the respective heads on the upper and

lower edges of the orifice. Neglecting velocity of approach, the

theoretical discharge through any elementary strip of area Ldy
at a distance y below the water surface, is given by the equation

dQi= LV2gydy

which integrated between the limits of /12 and hi gives

Q,= iLV2'g{h2^^-hi%) (26)

This formula gives the theoretical discharge from an orifice

where the pressures on the water surface and jet are equal and

the velocity of approach is considered to be zero. When hi is

zero—that is, when the water surface does not touch the upper

edge of the opening, the formula reduces to

Q, = fv'2^L/i2?S (27)

which is the theoretical formula for discharge over a weir without

velocity of approach correction (see Art. 70).

To make formula (26) applicable to actual conditions a coefS-

cient of discharge must be introduced and the formula becomes

Q = iCLV2^ih2^-hi'^) (28)

Values of C for this formula have not been well determined and

it is seldom used in practice. Formula (18), which for rectangular

orifices may be written

Q = CLDV2^, (29)

h being the head on the center of the orifice and C the coefficient

of discharge for rectangular orifices as given on page 79, may

be used satisfactorily even for quite low heads since these values

of C include corrections for the approximations contained in the

formula.

The theoretical difference between formulas (28) and (29)

may be shown as foUows: h being the head on the center of the

rectangle, h2 = h+iD and hi = h-iD. Substituting these values

in equation (26) and expanding them by the binomial theorem,

Q= CL2)V2sr/i l-5^-K7TTHT4-.5T8lHl6- • • • • (30)"96^2 2048/1* 21845/i6-
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This shows that formula (29) always gives a greater discharge than

formula (28) if the same value of C is used in each case. For

h=D, the sum of the infinite series is 0.989 and for h = 2D, it

is 0.997. The theoretical error introduced by using formula (29)

is thus about 1 percent where h =D and 0.3 of 1 per cent where

h= 2D.

In a manner similar to that described above for rectangular

orifices, the discharge for a circular orifice may be shown to be

Fig. 55.—Orifice with bottom con-

traction partially suppressed.

Y//jjjjj^/jjj/^/^^,L/////^,'y/A
•

FiQ. 66.—Orifice with bottom con-

traction completely suppressed.

in which Z) is the diameter of orifice and h, is the head on the center

of orifice. This formula gives results differing from those obtained

by the approximate formula similar to the corresponding formulas

for rectangular orifices. It h =D the sum of the series is 0.992

and if h = 2D the sum is 0.998. Formula (31) is seldom, if ever,

used in practice.

67. Suppression of Contraction.—The effect of constructing an

orifice so as to reduce the contraction is to increase the cross-

sectional area of the jet and thus to increase the discharge. If an

orifice is placed close to a side or the bottom of a reservoir the

tendency of the filaments of water to approach the orifice from all

directions (Fig. 55) is restricted and some of the filaments must
approach in a direction more nearly parallel to the direction of

the jet than they would otherwise. If the orifice is flush with

one side or the bottom (Fig. 56) the contraction on that side

of the orifice will be wholly suppressed.
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In a similar manner, rounding the inner edge of the orifice

(Fig. 57) reduces contraction. An orifice constructed to con-

form to the shape of the jet which issues from a sharp-edged orifice

FiQ. 57.—Orifice with rounded entrance. Fig. 58.—Bell-mouth orifice.

Fig. 59.—Sharp-edged orifice Fig, 60.—Standard short tube,

with extended sides.

(Fig. 58) is called a bell-mouth orifice. The coefficient of con-

traction of such an orifice approaches very close to unity.

58. Standard Short Tube.—Extending the sides of an orifice

does not affect the discharge so long as the jet springs clear. The
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orifice illustrated in Fig. 59 has a sharp upstream corner and the

conditions of flow are the same as for a sharp-edged orifice in a

thin plate.

When the jet touches the sides of the orifice the conditions of

flow are changed. A circular orifice with a sharp edge having

sides extended to about 2| diameters is called a standard short tube.

The jet is contracted by the edge of the orifice, as at m (Fig. 60),

and for low heads it wiU expand and fill the tube. For high heads

the jet may at first spring clear of the sides of the tube, but by
temporarily stopping the tube at its discharging end and allowing

the water to escape, the tube can be made to flow full. The moving

water carries with it a portion of the air which is entrapped in the

space, s, causing a pressure less than atmospheric pressure. The
result is to increase the head under which water enters the orifice

and therefore the discharge is greater than occurs from a sharp-

edged orifice of the same diameter discharging freely into the air.

Conditions at the outlet

end of the tube will first be

considered. By writing Ber-

noulli's equation between a

point in the reservoir where

the velocity of approach may
be considered zero and a

point, n, in the outlet (Fig. 61)

there is obtained, as for an
orifice (Art. 51) the relation

vi = V2^. . . (9)

Since the tube flows full, the

coefficient of contraction at

the outlet equals unity. It

has been found experimentally

that the coefficient of dis-

charge, C, and therefore the

coefficient of velocity, Cv, for
the outlet equals approximately 0.82, the value of the coefficient

varying slightly with the head and diameter of tube. Therefore
from formula (14), page 78

Fig. 61.—Standard short tube.

v= C.^2gh = 0.S2y/2gh, (32),
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and since the coefficient of contraction is unity,

Q = CaV2^ = 0.82aV2ih (33)

The discharge is thus about one-third greater than for a sharp-

edged orifice of the same diameter.

To investigate conditions at the contracted portion of the jet,

Bernoulli's equation may be written between a point on the

water surface, where the velocity is considered zero and the

pressure is atmospheric, and a point m in the contracted portion

of the jet. Thus

0+34:+h ="^+^+\osthead (34)
2g w

Assuming the coefficient of contraction at m to be 0.62, the same

as for a sharp-edged orifice discharging freely into the air, and

writing the equation of continuity between m and n

VmX0.62a = vXa
or

11*1=1.61!; (35)

J,
2

The head lost between the reservoir and m (page 81) is 0.04-=-.

Substituting these values, equation (34) becomes

0+z4+h =^^+^+0.m^^, . . (36)
2g w 2gf

and substituting v from equation (32) and reducing,

2^ = 34-0.8/1 (37)w

There exists, therefore, a partial vacuum at m which will lift a

water column 0.8h (Fig. 61), the pressure being O.Swh less than

atmospheric pressure. This has been confirmed experimentally.

Evidently the relation does not hold when 0.8h becomes greater

than 34 ft., or when the head becomes greater than approxi-

mately 42.5 ft., since this condition gives a negative value to —' w
in equation (37) which is not possible.
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The lost head in the entire length of a standard short tube

(see Art. 54) is given by the formula

'"={c7-')i'
(22)

and since C„= 0.82, the formula gives /io= 0-50 ^.

This case is important since the entrance to a pipe, where the

end of the pipe is flush with a vertical wall, is usually considered

as a standard short tube and the head lost at entrance to the

pipe is taken as the head lost in a standard short tube (seepage 156).

Fig. 62.—Converging tube with

sharp-cornered entrance.

Fig. 63.—Converging tube with

rounded entrance.

59. Converging Tubes.—Converging tubes having a circular

cross-section are frustums of cones with the larger end adjacent

to the reservoir. They may have a sharp-cornered entrance as in

Fig. 62 or a rounded entrance as in Fig. 63. The jet contracts

shghtly at a, just beyond the end of the tube. The coefficient of

contraction, Cc, decreases as the angle of convergence, B, increases;

becoming 0.62 for 9=180° when the tube becomes a sharp-edged

orifice. The coefficient of velocity, C, on the other hand, decreases

as 6 decreases. As for any orifice

Q= CcC,aV2gh = CaV2^ .... (38)

The following table gives coefficients for converging, conical tubes

with sharp-cornered entrances, interpolated from experiments by
d'Aubuisson and Castel. These results are interesting in that

they show the general laws of variation of coefficients but, on
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account of the small models used in the experiments, they should

not be taken as generally applicable to all tubes of this type.

Coefficients for Conical Converging Tubes

Coef-
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Since the coefficient of contraction is unity, the coefficients of

discharge given above are also the coefficients of velocity.

The nozzle being a form of tube to which formula (22), page 81,

applies, the head lost in the nozzle is

^"=(^^-01'

or substituting values of C„ given in the above table.

/io = (0.04 to 0.09) 7^,
2?

(22)

(39)

in which v is the mean velocity at the outlet of the nozzle.

Expressed as a function of the velocity, wi, in the hose or pipe

having a diameter D, the diameter of the nozzle being d,

/io=(0.04to0.09)(^y^ (40)

Bernoulli's equation, for a horizontal nozzle, may be written between

a point at entrance to the nozzle and a point in the jet as follows:

-+^ = |^+losthead, (41)w 2g 2g

in which pi is the gage pressure at the entrance, vi is the velocity

at entrance and v is the

velocity in the jet. From
this equation the pressure

at the base of the nozzle,

pi, may be determined if

the discharge is known or

the discharge may be de-

termined if pi is known.

61. Diverging Tubes.—
Fig. 65 represents a coni-

cal diverging tube, having

rounded entrance corners,

so that all changes? in

velocity occur gradually. Such a tube, provided the angle of

flare is not too great nor the tube too long, will flow full. The
theoretical velocity, Vi, at the outlet of the tube, obtained in the

same manner as for an orifice (Arts. 51 and 52), is

v, = V2^, (9)

Fig. 65.—Diverging tube.
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the actual mean velocity being

v= Cv^2gh, (14)

where Cv is the coefficient of velocity at the outlet.

Experiments indicate that even under favorable conditions

the value of C„ is small. Venturi and Eytelwein, experimenting

with a tube 8 in. long, 1 in. in diameter at the throat and 1.8 in.

in diameter at the outer end, obtained results which give a value

of Cv of about 0.46. The lost head (formula (22), Art. 54) was,

therefore, approximately 0.79^.

Even with this large loss of head the discharge through the

tube was about two and one-haK times the discharge from a sharp-

edged orifice having the same diameter as the throat of the tube.

The greater portion of the loss of head occurs between the

throat and outlet of the tube where the stream is expanding and

thus has a tendency to break up in eddies with a waste of energy.

Experiments by Venturi indicate that an included angle, 6, of

about 5° and a length of tube about nine times its least diameter

give the most efficient discharge. A diverging tube, such as that

shown in Fig. 65, is commonly called a Venturi tube.

The pressure head at the throat is evidently less than atmos-

pheric pressure. This may be shown by writing Bernoulli's

equation between m and n. When the throat is so small that

Bernoulli's equation gives a negative absolute pressure at m, for-

mula (14) no longer holds. The conditions are similar to those

abeady described for a standard short tube, Art. 58.

62. Borda's Mouthpiece.—Since the contraction of a jet issuing

from an orifice is caused by the water entering the orifice from

various directions inclined to the axis of the orifice, it follows

that the greater the angle between the extreme directions the

greater will be the contraction of the jet. The extreme case

occurs in Borda's mouthpiece (Fig. 66), where the water

approaches the orifice from all directions. This mouthpiece

consists of a thin tube projecting into the reservoir about one

diameter. The proportions are such that the jet springs clear

of the walls of the tube. Borda's mouthpiece is of interest because

it is possible to obtain its coefficient of contraction by rational

methods.

The cross-sectional area of the jet at the vena contracta, mn,
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is a' and the velocity at this section is v. If a is the area of the

opening, the coefficient of contraction Cc= a,'/a-

The size of the reservoir

is assumed to be so large in

comparison with the area of

the orifice that the velocity

of the water within the

reservoir may be neglected

and that the pressure on the

walls wiU, therefore, follow

the laws of hydrostatics.

Excepting the pressure act-

ing on the horizontal pro-

jection de of the mouthpiece

on the opposite wall, the

horizontal pressures on the

walls will balance each

other. The total pressure

on de is wah, which is also
Fig. 66.—Borda's mouthpiece.

the resultant horizontal accelerating force acting on the water

entering the mouthpiece.

Consider the mass of water xymn to move to the position x'y'

m'n' in t seconds. The change in the momentum of the mass con-

sidered is the difference in the momentum of the mass xx'yy' and
mm'nn'. But the momentum of xx'yy' is entirely vertical, there-

fore the change in momentum in a horizontal direction is equal to

the momentum of mm'nn', which is produced by the action of the

force wah.

a'vtw , ., . a'v^tw
The mass of mm'nn' is and its momentum is .

The impulse of the force wah is waht.

change of momentum,
, J a'vHw

what = -

therefore,

g

Equating impulse and

and since
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Therefore, assuming the coefficient of velocity to be unity, the

coefficient of contraction is theoretically 0.5, or calling the coeffi-

cient of velocity 0.98, the same as for a sharp-edged orifice, the

coefficient of contraction is 0.52. This value has been verified

approximately by experiments.

63. Re-entrant Tubes.—Tubes, having their ends project into

a reservoir (Fig. 67), and having a length of about 2^ diameters,

are called re-entrant or inward-projecting tubes. The action of

Water in such tubes is similar to that in standard short tubes

(Art. 58), except that the contraction of the jet near the entrance

is greater, At the discharge end the tube flows full and the

Fig. 67.—Re-entrant tube. Fig. 68.—Submerged orifice.

coefficient of velocity therefore equals the coefficient of discharge.

Thus (7c = l and C, = C.

From experiments C„ = . 75. The head lost, from equation

(22) (Art. 54) is, therefore, /io = 0.78
2ff'

This case is important since the entrance to a pipe, which

projects into a body of water, may be considered as a re-entrant

tube and the head lost at entrance to the pipe is taken as the head

lost in a re-entrant tube (Art. 102).

64. Submerged Orifice.—An orffice discharging whoUy under

water (Fig. 68) is called a submerged orifice. The assumption is

usually made that every filament of water passing through the

orifice is being acted upon by a head, hi — h2= h, the difference

in elevation of water surfaces. Based upon this assumption
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and using the same nomenclature as for orifices witii free dis-

charge

Vt=V2^ (9)

v = C„V2^ (14)

and

Q = CcC«aV2^= CaV2^: (18)

Coefficients of discharge for sharp-edged, submerged orifices

are very nearly the same as for similar orifices discharging into the

air.

The assumption that h2 is the pressure head on the center of

the orifice at its lower side is not strictly true unless all of the

velocity head, due to the velocity of the water leaving the orifice,

is lost in friction and turbulence as the velocity is reduced to zero.

It has been shown experimentally that less than 90 per cent of

this velocity head may be lost. Assuming a loss of 90 per cent,

the pressure head at the center of the orifice is /12— 0. 12^-. The

effect of this condition on the discharge may be investigated by
writing Bernoulli's equation between m and n and n and p (Fig.

68). This matter is not of great importance in connection with

submerged orifices, since the discrepancy resulting from the use of

formula (18) is relatively small and the coefficient of discharge

which is determined from experiments eliminates this source of

error.

The loss of head sustained at the outlet of a pipe discharging

into a body of still water is discussed in Art. 102. The conditions

of discharge in this case are

practically identical with

those of the submerged orifice

discussed above.

65. Partially Submerged
Orifices.—Fig. 69 represents

a rectangular orifice, the bot-

tom of which is submerged to

a depth D. The upper and

lower edges of the orifice are,

respectively, h and /la below the upper water surface. Z is the

diiference in elevation of water surfaces. L is the length of the

Fig. 69,—Partially submerged orifice.
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orifice. The total discharge through the orifice is evidently the

combined discharge of the upper portion of the orifice discharging

into the air and the lower portion discharging as a submerged

orifice.

The theoretical formula for discharge from this orifice is inter-

esting because of its relation to the submerged weir (Art. 79).

Let Qi and Qz be, respectively, the discharges from the free and

submerged portions of the orifice. Then from Art. 56, if C is

the coefficient of discharge for the upper portion

Qi =iC'LV2^iZ^-h^), (42)

and by Art. 64, C" being the coefficient of discharge for the lower

portion

Q2 = C"LV2^ih2-Z), (43)

and the total discharge, Q, for the orifice is

Q = Qi+Q2=LV2^[iC'{Z^-h^)+C"Vz{h2-Z)],i^)

or since h2—Z=D,

Q=LV2^BC'iZ^-hi^)+C"DVz] (45)

Since the coefficient of discharge for an orifice with free discharge

is very nearly equal to the coefficient for a submerged orifice the

equation may be put in the approximately equivalent form

Q= CLV2^[%iZ^-h^)+DVz] (46)

If hi = the orifice is a submerged weir and equation (45)

becomes

Q=LV2^iiC'Z^+C"DVz) (47)

The submerged weir is discussed in Arts. 79 and 80.

66. Gates.—As used in engineering practice gates are forms

of orifices. They may discharge freely into the air or be partially

or wholly submerged. Though the principles underlying the dis-

charge through orifices have been discussed in the preceding pages

they cannot be applied accurately to gates because of the fact that

gates do not ordinarily conform to the regular sections for which

coefficients are directly available.
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Fig. 70 illustrates a cross-section of a head gate such as is

commonly used in diverting water from a river into a canal. A
curtain wall extends between two piers, having grooves in which

the gate slides. The bottom of the opening is flush with the floor

of the structure. Such an opening has suppressed contraction

at the bottom, nearly complete contraction at the top and par-

tially suppressed contractions at the sides. Other equally com-

plex conditions arise. The selection of coefficients for gates is

therefore a matter requiring mature judgment and an intelligent

use of the few available experimental data. Even the most

Fig. 70.—Headgate. Fig. 71.—Discharge under

falling head.

experienced engineers may expect errors of at least 10 per cent

in the coefficients which they select and to provide for this uncer-

tainty ample aUowance should be made in designs.

67. Discharge under Falling Head.—A vessel is filled with
water to a depth hi (Fig. 71). It is desired to determine the time
required to lower the water surface to a depth A2 through a given
orifice. A is the area of the water surface when the depth of water
is y and a is the area of the orifice. The rate of discharge at any
instant when the head is y, the coefficient of discharge being C, is
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and in the infinitesimal time, dt, the corresponding volume of

water which flows out is

dV= CaV2^dt.

In the same infinitesimal time the head will drop dy and the

volume of water discharged will be

dV = Ady.

Equating the values oi dV

Ady= CaV2gydt
or

dt=
Ady

CaV2^'
(48)

From this expression, by integrating with respect to y between

the limits hi and /12, the time required to lower the water surface

the amount (/ii — /12) may be determined or the time of emptying

the vessel may be obtained by placing /12 = 0, provided A can be

expressed in terms of y. For a cylinder or prism the cross-sectional

area, A, is constant and the formula after integration becomes

t =
2A

CaV2,
-.(Vhl-Vh2).

'9

(49)

The above formulas apply also to vertical or inclined orifices,

provided the water surface does not fall below the top of the

orifice. The heads hi and /12 are then measured to the center of

the orifice. The time required to completely empty a vessel

evidently can be determined only in the case of a horizontal

orifice.

Example.—Two chambers, 1 and 2 (Fig. 72), with vertical

sides, each chamber being 8 ft.

wide, are separated by a par-

tition. Chamber 1 is 25 ft.

long and chamber 2 is 10 ft.

long. At the bottom of the

partition is an orifice 1 ft. by

2 ft. The orifice is at all times

submerged. The coefficient of

discharge is 0.85. At a certain instant the water surface is 10

ft. higher in chamber 1 than in chamber 2. After what interval
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of time will the water surfaces in the two chambers be at the

same elevation?

Solution.—Let y be the difference in elevation of water surfaces

at any instant and dy be the change in the difference in elevation

of water surfaces in time dt. The amount of water flowing into

chamber 2 in time dt will be

dV = CaV2gy rf< = . 85 X 2X 8 . 02Vydt = 13 . Wydt.

Also in the same interval of time the head will drop ^^ dy in

chamber 1 and rise ff dy in chamber 2. Then

,„ 10X25X8, 2000,

Equating values of dV

or

lZ.6V^dt=?^dy

^^^^.20dy

yAy

Integrating between the limits 10 and and reducing,

i = 26.5 seconds.

PROBLEMS

1. A sharp-edged orifice, 2 in. in diameter, in the vertical side of a large

tank, discharges under a head of 16 ft. If Cc is 0.62 and Cc is 0.98 determine

the diameter and velocity of the jet at the vena contracta and the discharge

in cubic feet per second.

2. In Problem 1 how far from the vertical plane containing the orifice

will the jet strike a horizontal plane which is 6 ft. below the center of the

orifice?

3. A sharp-edged orifice, 3 in. in diameter, lies in a horizontal plane, the

jet being directed upward. If the jet rises to a height of 21,2 ft. and the

coefficient of velocity is 0.98, what is the depth of the orifice below the water

surface, neglecting air friction. The pressure in the jet and on the surface

of the reservoir is atmospheric.

4. In Problem 3, if Ce = 0.62, what is the diameter of the jet 16 ft. above

the orifice?

5. If the orifice shown in Fig. 49, page 73, has a diameter of 2 in. and the

diameter of the vena contracta is 1.6 in. determine the discharge if ^ = 3.6 ft.,

F = 0, pa=9.7 lbs. per square inch, pB = 1.3 lbs. per square inch and the

head lost is 0.8 ft.

6. A sharp-edged orifice, 4 in. in diameter, in the vertical wall of a tank

discharges under a constant head of 4 ft. The volume of water discharged
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in 2 minutes weighs 6352 lbs. At a point 2.57 ft. below the orifice the center

of the jet is 6.28 ft. distant horizontally from the orifice. Determine Cc, C,

and C.

7. Determine the theoretical discharge (neglecting velocity of approach)

from a vertical rectangular orifice 3 ft. long and 1 ft. high, the head on the

top of the orifice being 2 ft.

8. A standard short tube, 4 in. in diameter, discharges under a head of

20 ft. What is the discharge in cubic feet per second? In gallons per day?

9. If a ^-in. hole is tapped into the standard short tube, referred to in

Problem 8, at a point 2 in. from the entrance, determine the discharge through

the tube, assuming the friction losses to remain the same.

10. If the upper end of a piezometer tube is connected with the j-in. hole

referred to in Problem 9 and the lower end is submerged in a pan of mercury,

to what height will the mercury rise in the tube?

11. A Borda's mouthpiece 6 in. in diameter discharges under a head of

10 ft. What is the discharge in cubic feet per second? What is the diameter

of the jet at the vena contracta?

12. Water is discharging through a gate 18 in. square. On the upstream

side the water surface is 5 ft. above the top of the gate and on the down-

stream side it is 2 ft. above. If the coefficient of discharge is 0.82, what is the

discharge in cubic feet per second?

13. A canal carrying 40 cu. ft. per second has a depth of water of 3 ft.

A structure is built across the canal containing a gate 2 ft. square, the bottom

of the gate being set flush with the bottom of the canal. If the coefficient of

discharge is 0.85, what will be the depth of water on the upstream side of the

gate?

14. If, in Problem 13, the gate has a width of 3 ft. and it is desired to

increase the depth of water above the structure to 4 ft., what should be

the height of the gate, all other conditions remaining the same?

15. A 3-in. fire hose discharges water through a nozzle having a diameter

at the tip of 1 in. If there is no contraction of the jet and C„ = 0.97, the

gage pressure at the base of the nozzle being 60 lbs. per square inch, what is the

discharge in gallons per minute?

16. In Problem 15 to what vertical height can the stream be thrown,

neglecting air friction?

17. In Problem 15, if it is desired to throw a stream to a vertical height of

100 ft., what must be the pressure at the base of the nozzle?

18. In Problem 15 what is the maximum horizontal range (in the plane of

the nozzle) to which the stream can be thrown?

19. A fire pump delivers water through a 6-in. main to a hydrant to which

is connected a 3-in. hose, terminating in a 1-in. nozzle. The nozzle, for which

Cc = l and C„ = 0.97, is 10 ft. above the hydrant and the hydrant is 50 ft.

above the pump. What gage pressure at the pump is necessary to throw

a stream 80 ft. vertically above the nozzle?

20. A cylindrical vessel 4 ft. in diameter and 6 ft. high has a sharp-edged

circular orifice 2 in. in diameter in the bottom. If the vessel is filled with

water how long will it take to lower the water surface 4 ft.?

21. A tank, which is the frustum of a cone having its bases horizontal
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and axis vertical, is 10 ft. high and filled with water. It has a diameter of

8 ft. at the top and 3 ft. at the bottom. What is the time required to empty
the tank through a sharp-edged orifice 3 in. square?

22. A hemispherical shell, with base horizontal and uppermost, is filled

with water. If the radius is 8 ft. determine, the time required to empty
through a sharp-edged orifice 6 in. in diameter located at the lowest point.

23. A tank 12 ft. long has its ends vertical, top and bottom horizontal,

and is 6 ft. high. The top and bottom are rectangular, having widths of 8 ft.

and 5 ft., respectively. A standard short tube, 4 in. in diameter, is located

in one end near the bottom. If at the beginning the tank is full, find the

time necessary to lower the water surface 4 ft.

24. In the tank described in Problem 23 assume that there is a vertical

partition parallel with the ends and 5 ft. distant from one end. Near the

bottom of this partition there is a circular, sharp-edged orifice 4 in, in diameter.

If at the beginning the larger chamber is filled and the smaller chamber con-

tains water having a depth of 2 ft., find the time required for the water

surfaces to come to the same level.



CHAPTER VIII

FLOW OF WATER OVER WEIRS

68. Description and Definitions.—A weir may be described as

any notch of regular form through which water flows. This notch

may be in the side of a tank, reservoir or channel or it may be an

overflow dam with retaining walls at its ends. In general any

obstruction, having an approximately uniform cross-section, placed

in a channel so that water must flow over it is a weir.

The edge or surface over which the water flows is called the

crest of the weir. The overfalling sheet of water has been termed

the nappe.

Weirs may be classified in two ways, (a) with reference to the

shape of the notch and (5) with reference to the cross-sectional

form of the crest.

Rectangular weirs—that is, weirs having a level crest and

vertical sides, are the most generally used. Other weirs in more

or less common use, named from the shape of the notch or opening,

are triangular weirs, trapezoidal weirs and parabolic weirs.

Weir crests are constructed of many cross-sectional forms, but

they all come under one of the general headings, (a) sharp-crested

weirs, which are used primarily for the measurement of flowing

water and (6) weirs not sharp

crested which are used pri-

marily as a part of hydraulic

structures.

A sharp-crested weir is a

weir with a sharp upstream

edge so formed that water in

passing touches only this edge.

The nappe from such a weir

/j,jj '77y/;^/j/M/T7

Fig. 73.—Sharp-crested weir.

is contracted at its under side in the same way that the jet from

a sharp-edged orifice is contracted. This is called crest contrac-

tion. If the sides of the notch also have sharp upstream edges so

101
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that the nappe Is contracted in width the weir is said to have end

contractions. The nappe from a weir having a length equal to the

width of the channel suffers no contraction in width and such a

weir is said to have end contractions suppressed. Fig. 73 is a

cross-section of a sharp-crested weir which illustrates crest con-

traction. Figs. 74 and 75 are views of weirs with end contrac-

tions. Fig. 76 shows a weir with end contractions suppressed.

Fig. 74.—Weir with end contractions.

There is a downward curvature to the water surface near the

weir crest (Fig. 73). This is called the surface contraction. The

head, H (Fig. 73), is the vertical distance from the water surface,

back of the effects of surface contraction, to the crest of the weir.

The curvature of the water surface is not perceptible beyond a

distance of about 2H upstream from the weir. The head is

usually measured at distances of 6 to 16 ft. upstream from the weir.
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The vertical contraction of the nappe includes both the surface

contraction and the crest contraction. The section where the

effects of crest contraction disappear, corresponding to the vena
contracta of the jet, will be referred to as the contracted section of

the nappe.

Incomplete contraction of the nappe occurs when the crest of a

weir is so near the bottom, or the ends of a weir with end con-

tractions are so near to the sides of the channel, as to interfere with

the approach of the water filaments in directions parallel to the

face of the weir. The conditions are similar to those causing par-

FiG. 75.—Weir with end contractions.

tial suppression of the contraction of the jet issuing from an

orifice, discussed in Art. 57.

Weirs not sharp crested are constructed in a wide variety of

cross-sectional forms as is exemphfied in the many shapes of over-

flow dams now in existence. Such weirs have surface contraction

similar to sharp-crested weirs, but conditions at the crest are

different and vary with the sectional form (see Figs. 84 to 87).

A variety of cross-sections of weirs of this class are shown in

Fig. 88.

The term velocity of approach, as used in connection with weirs,

means the mean velocity in the channel just upstream from the

weir. The portion of the channel near where the head is measured

is designated the channel of approach. The height of a weir, P
(Fig. 73), is the vertical distance of the crest above the bottom

of the channel of approach.
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69. Velocity at any Depth.—Consider water to be discharging

over the weir crest A (Fig. 77). In the derivation of the funda-

mental formula it will be assumed that the water flows without

friction and also that there is no contraction of the nappe and

therefore no pressure within the nappe. In order to write a gen-

eral expression applicable to all filaments it will be necessary to

make the further assumption that all of the water particles in

Fig. 76.—Weir with end contractions suppressed.

a cross-section of the channel of approach flow with the same
velocity.

From the nature of the discharge over weirs it is evident that

the water surface in the channel and the nappe must be subjected

to the same pressure from surrounding gases, which is usually

atmospheric pressure. AU pressures excepting those resulting

from the weight of the water may therefore be neglected.

The flowing water may be considered to be made up of filaments

of which mn is one, m being a point in the channel of approach



THEORETICAL FORMULAS FOR DISCHARGE 105

and n a point in the nappe, in the plane of the weir. The filament

passes over the weir at a distance y below the surface of the water.

The point m is a distance hm below the water surface and a distance

z below n. Vm is the velocity at m and i)„ is the velocity at n.

BernouUi's equation may be written between the points m and n

as follows:

f+/^-. =
lJ

...... (1)

and since hm—z= y

and

""=^2^^+^) (')

These formulas express the theoretical relation between depth

and velocity for any point in the plane of the weir.

Introducing the assumption that aU of the water particles ia a

cross-section of the channel of approach flow with the same

velocity, V; z^m in formulas (2) and (3) may be replaced by V,

which gives

»=*-% <*'

and

'"=ylMy+^ (5)

If the cross-sectional area of the channel of approach is very

much larger than the area of the notch, the velocity of approach

is small and V may be called zero. The depth, y, at which the

velocity Vu occurs is then from formula (4)

"'% <«

and the theoretical velocity at a depth y, from formula (5) is

i;„ =V2^ (7)

70. Theoretical Formulas for Discharge.—Referring again to

Fig. 77, let an origin be assumed at 0, a distance H vertically
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above the weir crest A. Formula (5) as derived in the preceding

article is

Vn =
\J2g(y+

(5)

This is also the equation of a parabola whose axis is the line OA

and whose intersection with the axis is at M, a distance -p- above

the origin. Assuming the curve MN to be the graph of the

Fig. 77.

equation, the abscissa at any depth, y, is the theoretical velocity at

this depth.

Considering a unit length of weir, the area of an elementary

strip is dy and the theoretical discharge through this strip is

dQi=Vndy

Substituting the value of y„ from equation (5)

(8)

and

dQi =
,J2g(y+^yy

Qi = V2'gj yjy+~dy
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or
r/ V2\H /T/2\^l

(9)Q.-iV2,[(H+g'-Q'

This formula expresses the theoretical discharge over a weir

1 ft. long, assuming uniform velocity in a cross-section of the

channel of approach, and neglecting the effects of friction and

contraction of the nappe. It evidently is also the area of the

surface OSNA (Fig. 77).

As a matter of convenience the symbol h may be substituted

for -^r-. Making this substitution the theoretical discharge for a

weir of length L becomes

Qt=iV2gL[{H+hr—h% (10)

which formula may be transposed to the form

Q,=fv^Lff5^[(l+-|y'-(^y']. . . (11)

In this form the term within the brackets is the factor which

corrects for velocity of approach. If the cross-sectional area of

the channel of approach is large in comparison with the cross-

sectional area of the nappe, the effect of velocity of approach will

not be appreciable and may be considered to be zero. The above

formulas then reduce to

Qt = W2gLH^-, (12)

which is the same as formula (27) (page 83).

This formula may also be derived directly from Fig. 77.

The area of the surface AOP which represents the discharge over a

weir 1 ft. long, being half of a parabolic segment, is equal to two-

thirds of the area of the circumscribed rectangle ORPA or

^HV2gH. The discharge for a weir of length L is therefore

^LV2gH^^, which is the same as formula (12).

71. Theoretical Formula for Mean Velocity.—Since formula

(9) which is the theoretical formula for discharge over a weir 1 ft.

long is also an expression for the area of the surface OSNA and

since the abscissas to this curve at any depth are the velocities

at the depth, the mean of the abscissas between and A gives

the mean velocity of the water discharging over the weir. The
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mean velocity is therefore the area of the surface OSNA divided

by H, and the expression for theoretical mean velocity is obtained

by dividing formula (9) by H, which gives, after substituting h

.-| = ,V25h[(i+^)''-(|)'']. . . . (13)

If the velocity of approach is considered to be zero, h also

becomes zero and the above formula reduces to

Vc=%V2^ (14)

Equating the right-hand members of equations (7) and (14) gives

the theoretical depth at which the mean velocity occurs, or

y =iH (15)

72. Weir Coefficients.—The assumptions which were made in

the derivation of formula ( 10) may be summarized briefly as follows

:

(a) All water particles in a cross-section of the channel of

approach flow with the same velocity.

(6) There is no contraction of the nappe.

(c) The water flows without friction.

Since these conditions do not in reality exist, it is necessary

to modify formula (10) and the formulas derived therefrom to make
them applicable to actual conditions. To accomplish this, three

empirical coefficients are apphed to the formula, there being one

coefficient to correct for the difference between assumed conditions

and actual conditions for each of the above assumptions. The
method of correcting for each assumption will be discussed in the

order given above.

(a) Correction for non-uniformity of velocity in cross-section of

channel of approach. The velocity in any cross-section of a channel

is never uniform. As a result of the combined effects of friction,

viscosity and surface tension (Arts. 7 and 110) velocities are

lowest near the sides and bottom of an open channel and, if the

channel is straight and uniform, the maximum velocity is below

the surface and near the center of the channel. If there are no

obstructions, velocities in a vertical line (Art. 110) vary approxi-

mately as the abscissas to a parabola. In the channel of

approach where a weir obstructs the flow, the law of distribution
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of velocities is not well understood and in cases where these

velocities have been measured they have been found to vary quite

irregularly. It is not practicable therefore to determine by
analysis the extent to which discharges over a weir may be affected

by the distribution of velocities in a cross-section of the channel of

approach, but the general effect may be seen by studying certain

assumed conditions.

Let the curve CMB (Fig. 78) represent any vertical distribu-

tion of velocities in the channel of approach for a strip of water

Fig. 78.—Velocities in channel of approach.

1 ft. wide. The velocity at any distance, y, above the bottom is y,

the total depth being d. The kinetic energy for this strip of water

is

^^=Xf'^^=lP'^^
(i«)

The kinetic energy for any distribution of velocities can be deter-

mined from this formula where v can be expressed in terms of y.

Three conditions of assumed velocities are illustrated in Fig.

78. Uniform velocities are indicated by the vertica? line EF.

Velocities decreasing uniformly downward with a bottom velocity

of zero are illustrated by the line DA. The line CMB illustrates

a paraboUc distribution of velocities. As these three Hues are

drawn, the mean velocity, Y, is the same for each case.

For uniform velocities, v in equation (16) is constant and equal

to Y, Substituting this value and integrating, there results

KE=
2ff

(17)
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For uniformly varying velocities, illustrated by the line DA

ig. 78) v=

integrating

(Fig. 78) v= 2V-^.. Substituting this value in equation (16) and
d

KE=^^^^, (18)
g

which shows the kinetic energy for this distribution of velocities

to be twice as great as for uniform velocity.

It may be shown also by writing the equation of a curve

similar to CMB, v being expressed as a function of y, and sub-

stituted for V in equation (16), that the kinetic energy for this

distribution of velocities is about 1.3 times the kinetic energy for

uniformly distributed velocities.

Similarly for any variation in velocities in the cross-section of a

channel, it may be shown that the water contains more kinetic

energy if the velocity is non-uniform than if it is uniform.

In general, the Idnetic energy contained in the water in the

channel of approach may be written

KE=aW~, (19)

in which a is an empirical coefficient always greater than unity,

and since velocity head is the kinetic energy contained in 1 lb. of

water (Art. 43) the general expression for velocity head due to

velocity of approach is a p- or ah.

This expression should, therefore, be written for h in formula

(13), and calling v' the velocity after this correction has been

applied

v'=ivm\{i+fY-{^f]. ... (20

(b) Correction for contraction.—The ratio of the thickness of

the nappe at its contracted section to the head on the weir may be

called the coefficient of contraction, Co. This includes only vertical

contraction,, a separate correction being required for weirs with

end contractions (see Art. 73). If t is the thickness of the nappe
and // the head

Cc =^ or t = CcH,
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and if v is the actual mean velocity in the contracted section of the

nappe, L being the length of the weir, the discharge over the weir is

Q = tLv = CcLHv (21)

The average value of Cc for sharp-crested weirs is about 0.635.

(c) Correction for friction. The velocity in the nappe suffers a

a retardation by reason of the combined effects of friction and
viscosity. The ratio of the actual mean velocity, v, to the velocity

v', which would exist without friction, is called the coefficient of

velocity, Designating the coefficient of velocity by the symbol Cv,

C„=-7 or v=C^,
V

'

substituting this value of «; in (21)

Q = CcC,LHv' (22)

The average value of Cv for a sharp-crested weir is probably about

0.98, the same as for a sharp-edged orifice.

Substituting the value of v' given in formula (20), the formula

for discharge over a weir with the three corrective coefficients

becomes

Q =fV2^C„C.LH^[(l+^')^-(^)^]. . . (23)

It is usual to combine lV2gCcCv into a single coefficient, C, called

the weir coefficient, then

C= %VTgCcC, (24)

If Cc = 0.635 and C„=0.98, the values given above, C = 3.33,

which is an average value of this coefficient. It is the value adopted

by Francis as a result of his experiments on sharp-crested weirs.

Later experiments by Fteley and Stearns, and Bazin con-

sidered in connection with the Francis experiments, show quite

conclusively that C is not a constant. Its value appears to be repre-

sented quite closely by the expression

3J4
"^ r/0.03'
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An investigation by Bazin gave the following value of C:

With C substituted, formula (23) becomes

Q=CLm[[l+-^f-{^Y] (25)

The expression within the brackets is the correction for velocity

of approach. When the velocity of approach is so small that the

head, h, due to this velocity may be considered zero, formula (25)

becomes

Q = CLH^^ (26)

Formula (25) includes coefficients which correct for all of the

assumptions which were made in deriving the theoretical formula

(10) for weirs with end contractions suppressed.

Formula (25) is often written in the equivalent form

Q = CL[{H+ahf'-ioihf'] (27)

73. Weirs with End Contractions.—The weir coefficient, C,

does not include end contractions. A separate correction must

therefore be appHed to the above formulas to make them applicable

to weirs with end contractions. End contractions reduce the

effective length of a weir. Francis determined from his own
experiments that the effective weir length is reduced an amount
equal to . IF by each contraction. If L is the effective length of

the weir, L' the measured length and N the number of contrac-

tions, from Francis' determination (see Fig. 75)

L-L'-O.liVF (28)

For two end contractions N = 2. If contraction is suppressed at

one endiV=l.

Some of the later experiments do not substantiate the results

of Francis, but no general formula better than the above has been

suggested. On account of uncertainty regarding the best method

of correcting for end contractions, where they can be properly

used, weirs with end contractions suppressed are preferable.

74. Modifications of Fundamental Formula.—In the form

given, formula (25) or its equivalent (27) is cumbersome and not
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convenient to use as a base formula. It is therefore seldom used

without modification. Francis adopted this formula without

correcting for non-uniform velocity in a cross-section of the channel

of approach, which gives a a value of unity, but this was before

experiments on the effect of velocity of approach were available.

A common method of simplification is to simply drop the last

term of formula (27) using as the base formula

Q = CL{H+ah)^^ (29)

The value of the term (ah)^ which is dropped is represented by
the area MOS (Fig. 77). The amount which the discharge is

affected by the term ah as retained is represented by the area

OSNP These areas are purely illustrative as actual areas are

dependent upon values of H and V. By substituting numerical

values, however, it may be shown that within the range of con-

ditions occurring in practice, the simphfied formula is nearly

equivalent to the original expression. It should also be noted

that a large portion of the error that would otherwise be introduced

by dropping the term (a/i)^ may be corrected in the selection of

coeSicients. The present understanding of weir hydraulics and

the experimental data available for the determination of empi-

rical coefiicients are not sufficient to justify too close an adherence

to fundamental formulas.

Equation (29) is not in a form convenient to use since h depends

upon V and therefore upon Q for its value. When Q is unknown a

formula of this form must be solved by first determining the

approximate value of Q, neglecting velocity of approach (formula

26). From this value of Q an approximate value of h may be

obtained, which substituted in the formula involving velocity of

approach correction gives a value of Q which is usually close

enough for the purpose. If a closer result is desired the compu-

tations may be repeated using this new value of Q for determin-

ing h. This formula may be modified by mathematical transfor-

mation so that terms depending upon Q for their value do not

occur on the right-hand side of the equation.

75. Algebraic Transformation of Formixla.—The fundamental

formula as derived in Art. 72 is

Q = CLH% {^^iT-m <->
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Expanding the left-hand term within the brackets by the binomial

theorem gives a diminishing series, and dropping the terms of

higher powers the equation becomes

Q = CLHH|^l+2^+g(^)...-(^j
J.

. . (30)

An expression approximately equivalent to the above is obtained

by dropping all of the terms within the brackets excepting the first

two, which gives

Q = CLW^(l+^jj^ (31)

As explained in the preceding article, the value of equation (30) is

changed but little by dropping the term [-rf] and since the sum

of the terms of the expanded series which are dropped is of oppo-

site sign and less than ( -^ ) , formula (31), is a closer approxima-

tion to the fundamental formula (27) than formula (29)

.

It is now desired to eliminate h, which depends upon Q for its

value. By definition of velocity of approach,

F=-j =—
2
— (approximately), . . . (32)

where A is the cross-sectional area of the stream in the channel of

approach. The value of Q as substituted is an approximation

since it does not include the velocity of approach correction.

It is to be appV'ed, however, to a term which is itself a small

correction, making the error introduced by this approximation

relatively unimportant. Using this value of V

^=w-^ (^^)

Substituting this value of h in formula (31) and reducing,

« = CLfl..[l+?f(^)]. .... (34)

3aC^
Replacing -r— by a single coefficient, C\, the formula becomes

Q = CL//?'|n-Ci(^)n. ^";
. . . . (35)
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This is a convenient base formula for discharge over weirs. Some
weir formulas are expressed in this form and most of the others

may be readily reduced to it. This form of formula provides a

direct solution for Q while other forms require a trial and error

method of correcting for velocity of approach. The values of

C and Ci must be determined from experiments and at this point

rational reasoning must give place to empirical science.

76. Weir Experiments.—Working formulas are obtained by
determining experimentally the values of coefficients to be applied

to derived formulas as, for instance, C and Ci in (35). Many
experiments, on sharp-crested weirs, covering a wide range of

conditions of flow, have been performed during the past century.

The most important of these are the experiments by Francis in

1852, those by Fteley and Stearns in 1877 and the Bazin experi-

ments in 1886.1 There are some inconsistencies in the results of

the various experiments, but in general they substantiate the cor-

rectness of the reasoning in the preceding pages and the base

formula derived thereby.

77. Formulas for Sharp-crested Weirs.—A large number of

formulas for sharp-crested weirs have been published, but only

those best known or those appearing to possess the greatest merit

will be given.

The Francis Formula which is obtained by putting C= 3.33

and q;=1 in formula (27) is as follows:

Q = S.33L[(H+h)^-h^] (36)

Substituting C = 3.33 and q: = 1 in (34) there is obtained the follow-

ing formula which gives results very nearly the same as

formula (36).

Q =3.33Lmi\l+0.26(^y (37)

This may be considered as another form of the Francis formula,

more convenient than the original, since it affords a direct solution

'J. B. Francis: Lowell Hydraulic Experiments (4th edition, 1883).

Also Trans. Amer. See. Civ. Eng., vol. 13, p. 303.. Fteley and Stearns:

Flow of Water over Weirs. Trans. Amer. Soc. Civ. Eng., vol. 12 (1883).

H. Bazin: Annates des Fonts et Chaussees, October, 1888. Translation by

Marichal and Tratjtwine: Proc. Eng. Club, Phila., January, 1890. Also

Annates des Fonts et ChaussSes for 1894, ler Trimestre.
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for Q, whereas the form (36) requires the trial method of solution.

The second term within the brackets is the velocity of approach

correction. When the velocity of approach is very small the term

0.26 [—7-) may be neglected and the Francis formula reduces to

Q=3.33Lff'^ (38)

If there are end contractions the measured length of weir should

be corrected by formula (28).

The Fteley and Stearns Formula, based upon a study of their

own experiments and the experiments of Francis, is

Q = 3.31L(ff+a/i)^^+0.007L, .... (39)

in which a = 1.5 for suppressed weirs and 2.05 for weirs with end

contractions. Without velocity of approach correction h = 0.

Formula (28) is to be used to correct for end contractions

The Bazin Formula.—The experiments on suppressed weirs by

Bazin covered a wide range of conditions. As a result of his

investigation Bazin devised a formula applicable to suppressed

weirs. As originally published, the Bazin formula is expressed in

metric units. His base formula is of the form of (35). The
value of coefficients which he derived (see Art. 72, page 111),

expressed in English units, may be written

07Q
C =3.248+^

and
Ci = 0.55.

Substituting these values in (35) the formula becomes

Q^ LH^(s. 248+^^^1+0. 55(~\1. . . (40)

It was not intended by Bazin that this formula should apply

to weirs with end contractions, though in the form given above

it can be so used, after correcting the measured length, L', by
formula (28). Without velocity of approach correction the term
within the brackets becomes unity.

For suppressed weirs in rectangular channels where L equals

the width of the channel as well as the length of the weir and d

equals the depth of water in the channel of approach, the area of
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water section in the channel of approach equals Ld and formula

(40) becomes

Q = Lff5'^ (3.248+^) (1+0.55^V . . (41)

In this form the Bazin formula applies more conveniently to sup-

pressed weirs.

The King Formula ^ is based upon a study of the experiments of

Francis, Fteley and Stearns, and Bazin, from which (see Art. 72,

page 111) values of

3.34

and

^ ~ rjO.OS

Ci = 0.56

were obtained. Substituting these values the formula becomes

v21

Q = 3.34LHi«[l+0.56(^y (42)

This formula applies to weirs with and without end contractions.

If there are end contractions the measured length of weir is to be

corrected by formula (28). In rectangular channels where the

weir length equals the width of channel, and d equals the depth

of water in the channel of approach, formula (42) reduces to

Q= 3.34LHi*'(l+0.56^) (43)

Without velocity of approach,

the term within the paren-

theses equals unity and the

formula becomes

Q= 3.34LHl•*^ (44)

Falls (Fig. 79) may be Fig. 79.—Fall,

considered as weirs having a

height of zero. In this case the head equals the depth of water,

iH. W. King: Handbook of Hydraulics, McGraw-Hill Book Co., p. 71

(1918).
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and if the channel has vertical sides, H/d, formulas (41) and (43),

equals unity. These formulas then become, respectively,

Q=Um+^-^\m^'' (^^)

and

Q = 5.21LH''*' (46)

Both of these formulas lack experimental verification.

78. Discussion of Weir Formulas.—As is the case with all

empirical formulas, weir formulas are no more accurate than the

data upon which they are based. The three sets of experiments

(see Art. 76) on which the above formulas are based give results

which are somewhat conflicting so that no formula can agree with

them all. The formula of Fteley and Stearns being based largely

upon the results of their own experiments gives discharges some-

what less than the Bazin and King formulas which agree more

closely with the Bazin experiments.

The Francis formula is based entirely upon the Francis experi-

ments, which do not cover a wide range of conditions nor include

any measurements for a determination of the effects of velocity

of approach. As a result of this the Francis formula gives results

considerably in error for high velocities of approach. It has also

been found that the Francis formula gives too small discharges

for low heads. For these reasons the Francis formula should not

be considered as generally applicable to all conditions.

In general, formulas of the form of (36) which do not have

terms dependent upon Q on the right-hand side of the equation

are much more convenient to use than those of the form of (27)

or (29). There is nothing sacrificed in accuracy by using formulas

of the former type.

79. Submerged Weirs.—If the elevation of the water surface

in the channel below a weir is higher than the crest of the weir

the weir is said to be submerged or drowned. The water flowing

away from the weir is sometimes called the tail water. The chan-

nel below the weir is called the channel of retreat and the velocity

in this channel is the velocity of retreat. The depth of submergence

is the difference in elevation between the tail-water surface and
the crest of the weir. Other terms used correspond to those for

weirs with free overfall.



SUBMERGED WEIRS 119

Fig. 80 represents a submerged rectangular weir. The head

is H and the depth of submergence D. The difference in elevation

of water surfaces is Z =H— D. The length of weir is L.

In Art. 65 a submerged weir is shown to be a special case of a

partially submerged orifice. The discharge may be considered as

the combined discharge of a weir whose crest is at the elevation of

the tail water and a submerged orifice, each discharging under a

head Z. Neglecting velocity of approach, the combined discharge is

Q = iC'^%LZ^-+C"V2'gLDVz. . . . (47)

Writing C, for lC'V2g and C2 for C"V2g the formula becomes

Q = L{CiZ^^+C2DVz). (48)

Fig. 80.—Submerged weir.

From experiments by Fteley and Stearns and by Francis are

obtained values of coefficients which substituted in formula (48)

give the following formula for submerged weirs:

Q =LVz(3AZ+4:AD) (49)

This formula does not provide any method of correcting for

velocity of approach nor of making other corrections explained

below. Results obtained by formulas of this type must be con-

sidered very approximate excepting for weirs that nearly duphcate

the conditions of the original experiments.

Some investigators have considered C and C", formula (47),

to be of the same value—that is, they have considered the crest

contraction to equal the surface contraction. If C and C" are

made equal, equation (47) may be reduced to the form

Q =CLVz(h+^ (50)
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This is the formula adopted by Fteloy and Stearns. Accompany-

ing the formula they give a table of values of C varying from

3.372 to 3.089 for different values of D/H. Since formula (50)

requires an accompanying table of coefficients, it is not as con-

venient as formula (49) and possesses no advantages from con-

siderations of accuracy.

80. Further Discussion of Submerged Weirs.—The dischai-ge

over submerged weirs is affected by velocity of approach in a

manner very similar to the discharge over woirs with froo overfall,

but as the formula is more complicated, the application of a

velocity of approach correction is more diflBcult. If in deriving

formula (45) (page 95) the head is increased by an amount ah

to correct for velocity of approach and the distance from the top

of the orifice to the water surface is made zero the following formula

is obtained

;

Q = ^C'LVYg[{Z+othf'-{cth)^^]+C"LV2^{Z+ah)-''{H-Z). (51)

This formula is complicated and is not reducible to a form permit-

ting of simple application to submerged weir problems. With the

limited experimental data available it is not possible to obtain

values of the coeflScients C, C" and a with any degree of accuracy.

There are requii-ed, moreover, other corrections, largely empirical

in character which if applied to the above formula will still further

complicate it.

The discharge over a submerged weir is greatly affected by

conditions in the channel below the weir. Water flows ovcm- the

crest of the weir at a velocity which is usually higher than the

normal velocity of the tail water and a portion of this velocity is

retained temporarily after leaving the weir. Where the slope of

the channel is not sufficient to maintain this high velocity there is

a piling-up effect just below the faster-moving water. This condi-

tion is illustrated in Fig. 80. The water has a higher velocity

at o and a lower velocity at b than the normal velocity in the

channel. This condition produces what is known as the standing

wave, a being the trough and b the crest of the standing wave.

Below the main wave a series of smaller waves form, which gi'adu-

ally reduce in size and finally disappear.

The factors affecting the height of the standing wave are not

well determined, but from a purely empirical investigation it
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appears to increase directly as the square root of H, D and Z
(Fig. 80) and inversely as the square root of di. The depth of

submergence, D, is one of the terms entering into submerged weir

formulas and its value should be accurately determined. Theo-

retically, it is the depth, Di, in the trough of the standing wave,

that is to be used in formula (47), but usually it is the depth of

submergence at D, below all turbulence caused by water iiowing

over the weir that is most easUy measured and most convenient to

use in submerged weir problems.

The only experiments on submerged weirs that furnish any data

relative to the effect of velocity of approach and channel conditions

below the weir are the experiments by Bazin. Two formulas for

submerged rectangular sharp-crested weirs without end conitrac-

tions which accord very well with the results of the Bazin experi-

ments are given below. These formulas are largely empirical in

character and a discussion of their derivation is not given. The
symbols used are indicated in Fig. 80. The submerged weir

formula by Bazin ^ may be written

Q =LH^ (3 . 248+^) (1 +0.55^) (l . 05-hO . 21
^)^|.

(52)

The submerged weir formula by King ^ is

Q=3.34LZ-(l+0.56^)(l+l^g)(l+ 1.2§). . (53)

Each of the above formulas will require further experimental

verification before it can be considered apphcable to all conditions.

81. Triangular Weirs.

—

Fig. 81 represents a trian-

gular notch or weir over

which water is flowing. The

measured head is H and

the distance between the
x^ „, „, .

„ ,, . . ,1 Fig. 81.—Triaagular weir.
Sides of the weir at the

water surface is I. The sides make equal angles with the vertical.

The area of an elementary horizontal strip dy in thickness is

^AnTudes des Fonts el Chmissies for 1898, ler Trimestre, p. 235.

2 Handbook of Hydraulics, p. 82.
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I'dy. Neglecting velocity of approach, the theoretical velocity

through this strip for a head y is V2gy and the theoretical

discharge is

dQt=l'V2gydy

from similar triangles

I jj I.

Combining the two equations

integrating between the limits II and and reducing,

Q, =^V2'gim (54)

The slope which the sides of the weir make with the vertical may
be represented by z, then

^ = 2 or l = 2zll (55)

Substituting this value of I in (54) the theoretical formula for

discharge, expressed in terms of head and slope of sides, is,

Qt-^^^zW^ (56)

Applying a coeificient of discharge and combining it with the

constant terms the same as for rectangular weirs

Q = Czm, (57)

in which the value of C must be determined experimentally.

If the angle between the sides is a right angle, z equals unity.

Most of the available experimental data arc for right-angled

notches. Triangular weirs having other angles are seldom used.

Experiments indicate quite clearly that C is not a constant, its

value decreasing with increasing heads.

The following are values of C as obtained from various sets of

experiments 1 together with corresponding formulas for sharp-

'Prof. James Thompson: Experiments on Triangular Weirs. British
Association Reports, 1861. James Babb: Flow of Water over Triangular
Notches. Engineering, April 8 and 15, 1910. H. W. King: Handbook of

Hydraulics, p. 86, 1918.
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edged, right-angled, triangular weirs. From Thompson's experi-

ments

C (mean) =2. 54 Q = 2.54H^' (58)

From Barr's experiments;

2A8
C = Tm2 Q = 2A8H''\ . . . (59)

From experiments at the University of Michigan;

^ 2.52
-^o.c Q = 2.52H^". . . . (60)

Other experiments on triangular weirs give results varying some-

what from those listed above.

One interesting fact brought out by Barr's experiments is that

the discharge over a sharp-edged, metallic, triangular weir may be

2 per cent greater when the inner face of the metal is rough than

when it is smooth. The rougher face, by retarding the movement
of water parallel to it, reduces the velocities which have the greatest

influence on contraction, thus reducing the contraction and so

increasing the discharge.

The effect of velocity of approch on triangular weirs is similar

in character to the effect on rectangular weirs. No data for

determining coefficients are, however, available. From the nature

of the triangular weir the cross-sectional area of the nappe is usually

very much smaller than that of- the channel of approach. The

velocity of approach is therefore small and the error introduced by
neglecting it is usually inappreciable. This has been confirmed

experimentally by Barr.

The triangular weir affords an excellent method of measuring

small discharges. Formula (59) pi-obably applies more accurately

to sharp-edged notches cut in very smooth metal and (60) to

sharp-edged notches cut in rougher metal, such as ordinary com-

mercial steel plate.

For angles slightly greater or less than 90° it is probable that

the values of C Usted above, if substituted in formula (57), will

give quite accurate results.

82. Trapezoidal Weirs.—Fig. 82 represents a trapezoidal

weir ha\'ing a horizontal crest of length L. The sides are equally

inclined, making angles a/H = z with the vertical.
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By writing the equation

dQi= l'V2gydy

and expressing I' in terms of y
^"HX" and known quantities in a

manner similar to that used

for triangular weirs, and in-

tegrating and reducing, the

Fig. 82—Trapezoidal weir. following formula for the the-

oretical discharge over trape-

zoidal weirs without velocity of approach correction can be

obtained

:

Qt = lV2^LH^+^V2^zH^'' (61)

The same formula is obtained directly by the addition of the

theoretical discharges over rectangular and triangular weirs.

With coefficients included the formula for discharge may be written

Q = CiLH^^+C2zH''^ (62)

There are no experimental data for the determination of Ci and C2

and for this reason the trapezoidal weir has little practical value.

83. The Cippoletti Weir.—A trapezoidal weir, having a value

oi z = a/H (Fig. 82) of J, is called a Cippoletti ^ weir. This slope

of the sides is approximately that required to secure a discharge

through the triangular portion of the weir opening that equals the

decrease in discharge resulting from end contractions. The
advantage of the Cippoletti weir is that it does not require a

correction for end contractions. The method employed by
Cippoletti in arriving at his value of z is as follows:

The discharge through the triangular portion of the weir,

C being the coefficient of discharge, is

Q = ^C'V2gzH^\

The decrease in discharge resulting from end contractions, C"
being the coefficient of discharge, according to Francis is

Equating the right-hand members of these equations, assuming
C to equal C", and reducing, there results

8=j (63)

» C. Cippoletti: Canal Villoresi (1887). Description of trapezoidal weir.
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The formula given by Cippoletti for determining the discharge

over Cippoletti weirs is

Q=3.367Li/^ (64)

to be corrected for velocity of approach by the Francis method.

Later experiments indicate that this formula gives too great dis-

charges for the higher heads when the velocity of approach is low.

The Cippoletti weir is used quite extensively in western United

States for measuring irrigation water where precision in measure-

ment is not essential.

84. Weirs Not Sharp Crested.—Weirs having cross-sections

such that they partially or completely suppress contractions at the

Fig. 83.—Weir with rectangular

cross-section, Nappe springing

clear.

FiQ. 84.—Weir with rectangular cross-

section, Nappe adhering.

Fig. 85.—Weir with rounded crest. Fig. 86.—^Weir with Ogee cross-section.

crest are used frequently in hydrauUc structures,

tions of dams are examples of this type

of weirs. Such weirs also may be used

as a means of measuring water if

coefficients for the particular shape of

weir are available.

Figs. 83 to 88 illustrate various

Spillway sec-

cross-sections of weu-s. Figs. 83 and
^^^ 87.—Weir with triangula

84 have rectangular sections with cross-section,

sharp upstream corners. If the

breadth of weir, b (Fig. 83), is about ^H or less the nappe
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Horton's Values op Weir Coefficient, C. (See Fig. 88)
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After a thorough investigation Horton ^ has prepared tables

and curves of C, corresponding to different heads, for practically

all shapes of weir sections for which experimental data are avail-

able. In computing the values of his coefficients Horton assumed

the velocity of approach correction given by the formula

Q = CL(h+-^J (65)

This formula is obtained from formula (27) by giving a a value

of unity and dropping the last term. The correction is doubtless

too small, but since it was used in reducing the experimental data

it should be applied in weir problems where Horton's coefficients

are used. By substituting a=l in equation (34) and reducing

there is obtained

Q = CLH%[l+0.024C2(~yi, .... (66)

which gives results practically equivalent to (65) and is more

convenient to use.

Fig. 88 shows various sections of weirs and dam crests for

which experimental data are available. The table on page 127

gives Horton's values of C for these shapes.

The degree of accuracy which may be expected from the use

of weirs not sharp crested depends upon the experimental data

available for determining C. Inasmuch as there are innumerable

shapes that may be used, it is not probable that experimental

data for any large number of them will be secured for many
years. Complete data for any particular shape of weir requires

an exhaustive research similar to that required for sharp-crested

weirs. The data at present available arc, however, sufficient to

assist in the selection of approximate coefficic^nts for the shapes

of weirs commonly used in hydraulic design.

Weirs not sharp crested, having cross-sections similar to the

shapes for which experimental values of coefficients are available,

may be used for the approximate measurement of discharges.

There are some cross-sectional forms which might be more satis-

factory for the measurement of flowing water than sharp-crested

weirs if as complete experimental data for them were available.

•Robert E. Hokton: Weir Experiments, Coefficients and Formulas.
Water Supply and Irrigation Paper, No. 200, U. S. Geol. Survey (1907).
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Existing dams frequently may be used for estimating flood

discharges of streams where direct measurements of discharge by
other methods are impracticable.

85. Broad-crested Weirs or Chutes.—A weir having a broad

flat top such as is illustrated in Fig. 89 is called a broad-crested

weir. A broad-crested weir is usually understood to be a weir

having an approximately rectangular cross-section with a width

of top, b (Figs. 84 and 89) great enough to prevent the nappe

from springing clear of the top of the weir. Fig. 89 may also

be considered to represent a longitudinal section of a chute,

that is, a short channel discharging from a body of comparatively

still water. The chute bears a relation to the weir analogous

to the relation of the short tube to the orifice (page 85). A

Fig. 89.—Broad-crested weir.

rational derivation of a formula for discharge over broad-crested

weirs or chutes is given below.

There wiU be a drop, h, Fig. 89, in the water surface near

the upstream edge of the crest. The velocity of water below

this drop is that due to the head, h, or

v=Cp'^2gh,

where v is the mean velocity and Cv is the coefficient of velocity.

If the top of the weir is level or has a very gentle slope the depth,

d, will remain very nearly constant from the place where h is

measured to the lower edge of the crest. With a greater slope

of crest the velocity will accelerate and d will gradually decrease

toward the lower edge of the crest. The discharge will not,

however, be materially affected by the slope of the crest, pro-

vided it is sufficient to maintain the velocity v, since, as is shown

below there is a maximum discharge which can not be exceeded.
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If L is the length of weir or width of chute, the area through

which water is discharging under a head, h, is

a = Ld=L{H-h).

The mean velocity is that due to the head, h, multiplied by the

coefficient of velocity Cv, and the discharge is

Q=CMH-h)V2^. (67)

The coefficient of contraction is unity and Co, therefore, is also

the coefficient of discharge.

In this equation Q = when h-0 and also when h=H.
There is therefore an intermediate value of h which makes Q a

maximum. This maximum value of Q can be obtained by
differentiating and equating to zero, which gives

whence,
h= iH (68)

Substituting this value of h in equation (67) and reducing gives

Q = 3.087C„LH^^ (69)

The coefficient, Cv, is similar in character to the coefficient of

velocity for a standard short tube. Fig. 60. Its value depends
upon the shape of the upstream edge of the crest and probably

approaches a maximum value of about 0.98 when this edge is

so rounded as to prevent contraction. Formula (69) may also

be written

Q=CLm, (26)

which is the base formula for weirs not sharp crested.

From experiments on broad-crested weirs it has been found
that for weirs having a breadth of 10 ft. or more, discharging

under a head of 1.0 ft. or more,

Q=2.63LH^, (70)

which corresponds to a coefficient, C„, in formula (69) of 0.85.

If there are end contractions a separate correction must be
applied to the length.
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Formula (69) is of fundamental Importance in connection

with the entrance conditions for open channels. It gives the

maximum rate at which water can be drawn through an open

channel from any body of comparatively still water. The rate

of discharge may be less but it can never be more than that

given by the formula (see Art. 126).

86. Meastirement of Head.—In using weirs to measure the

rate of discharge, the head, length of weir and cross-sectional

area of the channel of approach must be carefully measured.

The last two of these usually need to be measured but once and

can then be used in all subsequent determinations of Q.

The head is measured with some form of a gage which is set

in a fixed position. The elevation of the zero of

the gage with reference to the crest of the weir

should be accurately determined. It is preferable

to measure the head in a well or stilling box con-

nected to the channel by a small pipe, the end of

which is flush with the side of the channel. This

provides a means for measuring the head in still

water and reduces the effect of waves which are

usually present in the channel of approach. For

the most precise work a hook gage should be used.

The hook gage, Fig. 90, consists of a graduated

metallic rod with a pointed hook at the bottom

which slides vertically in fixed supports. By means

of a vernier attached to one of the supports, read-

ings to thousandths of a foot may be taken. The

rod usually has a range of movement of about

2 ft. The gage should be rigidly attached to a

support at such an elevation that the movement

of the hook covers the range of water surface eleva-

tions to be read. To take a reading, the point of

the hook is lowered below the surface and then

slowly raised by the screw at the top of the instru-

ment. Just before the point of the hook pierces

the skin of the water, a pimple is seen on the

surface; the hook is then lowered shghtly until the

pimple is barely visible and the vernier is read.

Where less precision is required, especially for securing con-

tinuous records of elevation as in ordinary stream gaging work,

Fig. 90.

Hook gage.
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some other form of gage is desirable. An ordinary staff gage,—
that is, a painted rod graduated to feet and decimals of a foot

so set that the water surface comes in contact with the gradua-

tions—is quite satisfactory in some cases.

There are a great many different types of recording gages

which give continuous records of water-surface elevation. These

gages either provide a record by a graph, the coordinates of which

indicate the time and stage, or by a device that prints elevations

at stated intervals of time. The essential parts of a recording

gage are: a float which rises and falls with the surface of the

water, a device for transferring the vertical motion of the float

to the record, a recording device, and a clock.

Another device for determining head is a plummet attached

to the end of a steel tape. This is used to measure the vertical

distance from a fixed point above the channel of approach to the

water surface. The reading of the tape when the point of the

plummet is at the elevation of the crest of the weir is first deter-

mined accurately and the difference between this reading and

the reading when the point just touches the water surface gives

the head on the weir. This method gives accurate results, but

for precise work it probably is preferable to measure the head in

a stilling box with a hook gage, so as to conform to the conditions

of the experiments upon which weir formulas are based.

The head always should be measured far enough upstream

.from the weir to be well above the effects of surface contraction.

In their experiments, Francis, and Fteley and Stearns measured

heads 6 ft. and Bazin 16.4 ft. upstream from the weir. The
distance selected should preferably conform approximately to

that used in the experiments on which the formula to be used in

computing discharges is based, though accurate comparative

measurements show an almost imperceptible difference between

heads measured 6 ft. and those measured 16.4 ft. from the weir.

87. Conditions for Accurate Measurement over Sharp-crested

Weirs.—To obtain maximum accuracy the face of the weir

should be vertical and the crest level. The crest should be cut

from plate metal, true to line with a flat top and sharp upstream

corner.

Suppressed weirs having a length equal to the channel width

have a space below the nappe which may have no connection

with the outside air. In passing over this space the nappe
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carries with it all or a portion of the entrapped air, thus reducing

the pressure underneath and causing the nappe to be depressed.

This is equivalent to reducing crest contraction making the

usual formulas inapplicable. The space under the nappe,

therefore, should be connected by pipes or by other means with

the outside air.

In general all conditions such as dimensions of weir and

channel and ranges of head should conform as nearly as prac-

ticable to the conditions of the experiments which form the basis

of the formula that is to be used in computing discharges. The
length of the weir should be at least three times the measured

head. Heads less than 0.2 ft. are undesirable since very low

heads create a tendency for the nappe to adhere to the weir

crest thus affecting the coefficient of contraction. Though it has

not been definitely proved, it appears from rather limited experi-

mental data that weir formulas apply as accurately for heads

up to 4 ft. as for lower heads.

Weirs with end contractions should have their ends at a

distance of at least two times the head from the sides of the

channel in order to insure complete contraction.

PROBLEMS

1. A sharp-crested weir 4 ft. high extends across a rectangular channel

12 ft. wide. If the measured head is 1.22 ft., determine the discharge, using

formulas (36), (37), (40) and (42).

2. Solve Problem 1, changing the height of weir to 2 ft. and the measured

head to 1.54 ft.

3. Solve Problem 1, changing the height of weir to 2 ft. and the measured

head to 0.25 ft.

4. What length of weir should be constructed in a stream 100 ft. wide

so that the measured head will be 1.50 ft. when the discharge is 120 cu. ft.

per second?

6. A rectangular channel 20 ft. wide has a 3-ft. depth of water flowing

with a mean velocity of 2.45 ft. per second. Determine the height of sharp-

crested suppressed weir that will increase the depth in the channel of approach

to 5 ft.

6. A sharp-crested weir 2.5 ft. high is built across a rectangular flume

30 ft. wide. The measured head is 1.25 ft. In the flume is another sharp-

crested weir having a height of 3.5 ft., the middle of the weir being on the

center line of the flume. If the measured head on the latter weir is 1.62 ft.

what is the length of crest?

7. A rectangular, sharp-crested weir is to be consructed in a stream in

which the discharge varies from 2 cu. ft. per second to 50 cu. ft. per second.
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Determine a length of weir, such that the measured head will never be less

than 0.2 ft, nor greater than one-third of the length of weir.

8. Determine the discharge over a right-angled, triangular weir if the

measured head is 1.82 ft.

9. The discharge over a right-angled, triangular weir is 7.28 cu. ft. per

second. What is the measured head?

10. A channel is carrying 10 cu. ft. per second of water. Assuming that

an error of 0.005 ft. may be made in measuring the head, determine the

percentage of error resulting from the use of a right-angled, triangular weir,

and also from the use of a rectangular weir 10 ft. long.

11. The measured discharge over a dam 100 ft. long is 520 cu. ft. per

second when the head is 1.28 ft. Determine the weir coefficient for this

head.

12. If in a certain channel the velocity varies uniformly from 3 ft. per

second at the surface to 1 ft. per second at the bottom, determine the corre-

sponding value of a.

13. An overflow masonry dam is to be constructed across a stream.

The stream is estimated to have a maximum flood discharge of 30,000 cu. ft.

per second, when the elevation of water surface at the dam site is 1132.0.

Six sluice gates each 8 ft. high and ft. wide (C = 0.85) are to be constructed

in the dam with their sills at elevation 1122.5. The main overflow weir for

which C = 2.63 will be 200 ft. long with a crest elevation of 1184.0. An
auxiliary weir 600 ft. long with a crest elevation of 1185.3 will operate during

floods. For this weir C = 3.40. With all sluice gates open what will be the

elevation of the water surface upstream from the weir when the discharge

is 30,000 cu. ft. per second? Neglect velocity of approach.

14. A submerged sharp-crested weir 2.5 ft. high extends clear across a
channel having vertical sides and a width of 10 ft. The depth of water in the

channel of approach is 4.0 ft., and 36 ft. downstream from the weir the depth
of water is 3.0 ft. Determine Q by formulas (52) and (53).

16. A channel 20 ft. wide with vertical sides is carrying 400 cu. ft. per

second of water at a depth of 4.0 ft. How high a sharp-crested weir should
be constructed across the channel to raise the elevation of the water surface

0.5 ft.?



CHAPTER IX

FLOW OF WATER THROUGH PIPES

88. Description and Definitions.—As the term is used in

hydraulics, a pipe may be defined as a conduit which carries

water under pressure. More commonly pipes are of circular

cross-section, and hydraulic formulas for the flow of water through

pipes are usually expressed in a form particularly adaptable to

circular pipes, but the same general laws apply regardless of the

cross-sectional shape of the pipe.

Pipes which do not flow full or which flow full without exerting

pressure against the top of the pipe are classed as open channels

and are treated in a separate chapter (Chapter X). A city

water main carries water under pressure and is therefore an

example of a pipe while a sewer which normally does not carry

water under pressure is classed as an open channel.

Since friction losses in pipes are independent of pressure

(Art. 96) the same laws apply to the flow of water both in pipes

and open channels, and the formulas for each take the same

general form. Some formulas are designed to be used either for

pipes or open channels, but the more common practice is to use

different formulas for the two classes of conduits.

89. Wetted Perimeter and Hydraulic Radius.—The wetted

perimeter of any conduit is the line of intersection of its wetted

surface with a cross-sectional plane. Thus for a pipe flowing

full, d being the diameter, the wetted perimeter is equal to the

circumference or wd, if flowing half full it is Jird.

The hydraulic radius of a conduit is the area of a cross-section_

of the stream divided by the wetted perimeter of that section.

For a circular pipe flowing either full or half fuU the hydraulic

radius, r, is evidently rf/4 or R/2, R being the radius of the pipe.

The terms wetted perimeter and hydraulic radius are used

more generally in connection with open channels than with

pipes, but they are sometimes used in pipe formulas. Their

application to open channels is discussed in Art. 109.

135
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90. Critical Velocities in Pipes.—Under the conditions ordi-

narily encountered in hydraulic practice, water flows through

pipes with a turbulent motion, that is, the water particles have

a transverse as well as a longitudinal motion, and any particle

near the center of the pipe at one time may be near its sur-

face an instant later, occupying successively various trans-

verse positions, while it is at the same time being propelled

forward.

Though at any instant the water particles in a pipe where

turbulent motion exists move forward with different velocities

(Art. 91), the average longitudinal velocity of every particle is

approximately the same. This may be shown by suddenly in-

jecting a colored liquid into a pipe and observing the coloring

matter where it discharges from the pipe. It will be observed

that the coloring matter remains in a short prism even after the

water has traveled a distance of 1000 diameters or more and that

the water on either side of this prism is comparatively clear.

This principle is made use of in measuring the velocity of flow

through pipes.

At comparatively low velocities, water may be made to flow

through small pipes without turbulence, that is with stream

line motion. Under these conditions the water particles all

flow in paths parallel to the axis of the pipe. The particles near

the axis then flow with a higher velocity than the other particles,

the velocities gradually becoming less as the distance from the

center of the pipe increases, the lowest velocity being near the

surface of the pipe. This retardation of velocities is caused by
the viscosity of the water and friction between the moving water

and the pipe.

The flow of water in small glass tubes has been studied experi-

mentally by Reynolds ^ in the following manner. Water was
drawn through the tubes from a glass tank in which the water

had been allowed to come to rest, arrangements being made to

introduce threads of colored water into the entrance of the tubes.

Reynolds foimd, when the velocities were sufficiently low, that

the streak of color extended as a beautiful straight line through

the tube. As the velocity of the water was increased by small

stages, a velocity was finally reached where the color suddenly

lOsBOBNE Reynolds: Phil. Trans. Royal Society, 1882 and 1895.
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J in. in diameter are illustrated

mixed with the surrounding water. The velocity at which

mixing began was evidently the velocity at which stream-line

motion ended and turbulent motion began. It has been termed

the higher critical velocity.

Reynolds also found that below a certain limiting velocity,

when the water was disturbed it soon resiuned stream-line motion

but when the velocity was above this limit and the water was

disturbed, even though stream-line motion had existed before

the disturbance, txirbulent motion occurred and stream-line

motion could not be established. This limiting velocity is called

the lower critical velocity.

The conditions of flow in a pipe

in Fig. 91. The line OA repre-

sents a gradual increase in

velocity. If the water is not

disturbed, stream-Une motion

wiU continue until a velocity

somewhat greater than 3 ft. per

second has been reached. Above

this velocity the flow will always

be turbulent. If now the water,

starting with turbulent motion,

is gradually decreased in velocity

as indicated by the line AB,
turbulent motion will continue

until the velocity is reduced to

about 0.5 ft. per second. Below

this velocity stream-line motion

will always exist.

In general, it may be stated that for any pipe carrying water

of a constant temperature

:

(a) There is a certain velocity (the lower critical velocity)

below which stream-line motion always exists.

(6) There is a certain velocity (the higher critical velocity)

above which turbulent motion always exists.

(c) Between the lower critical velocity and the higher critical

velocity the motion may be either stream-line or turbulent,

depending upon the initial condition of flow.

Reynolds found that the critical velocity varied inversely as

the diameter and directly as the viscosity of the water, the latter

Fig. 91.
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being a function of the temperature, or expressed empirically,

the lower critical velocity is

0.0388P f..
Vl= 3 W

and the higher critical velocity is

0.246P
'

Vn = J , (2)

d being the diameter of the pipe in feet and

^
" 1 +0.034^+0.0002^2'

(3)

being a viscosity coefficient in which T is the temperature in

degrees Centigrade.

The following are critical velocities in feet per second obtained

from the above formulas for pipes of different diameters at a

temperature of 20° C. or 68° F.

i in. 1 in. 2 in. 4 in. 6 in. 12 in.

Lower 0.53 0.26 0.13 0.07 0.04 0.02

Higher 3.35 1.68 0.84 0.42 0.28 0.14

As indicated by the above table the velocities entering into

problems with which the engineer has to deal are ordinarily

greater than the higher critical velocity. If not otherwise stated,

therefore, turbulent flow will be assumed.

The laws governing stream-line motion are radically different

from those governing turbulent motion.

91. Friction and Distribution of Velocities.—There is always

friction between moving water and the surface of the conduit

with which the water comes in contact. If this were not so the

water in every part of the cross-section would flow with the same
velocity. Fig. 92 shows the normal condition of flow in a straight

pipe where there are no disturbing influences. Water particles

adjacent to the surface are retarded by friction and viscosity

(Art. 6) causes a retardation of the particles removed from the

pipe surface. The maximum velocity is at the center, and
lines of equal velocity are concentric rings as shown in cross-
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section. The velocities In any longitudinal section when plotted

as absicssas with the distance from one edge of the pipe as ordi-

nates approximately define an ellipse. Experiments indicate that

the mean velocity is about 0.85 of the maximum velocity. If d

represents the diameter, the circle of mean velocity is approxi-

mately 0.13d from the surface of the pipe.

Fig. 92.—Distribution of velocities in straight pipe.

Any irregularity or obstruction in a pipe or any condition

which causes the water to change its direction of flow will change

the regular distribution of velocities. A bend in a pipe, for

example, causes the line of maximum velocity to move from

the axis of the pipe towards its concave side. Fig. 93 shows the

Fig. 93.—Distribution of velocities in curved pipe.

actual distribution of velocities in a curved pipe from measure-

ments by Saph and Schoder.

92. Energy of Water in a Pipe.—The energy contained in a

stream of water assumed to be moving with a uniform velocity,

that is, with the same velocity in every part of its cross-section,

is given by the formula,

(4)
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W being the weight of water which moves past a cross-section in

one second with a uniform velocity v. In the previous chapter,

Art. 72, it has been shown that for the same average velocity,

the energy of moving water in an open channel is greater

for non-uniform velocity in a cross-section than for uniform

velocity. The same is manifestly true for pipes, and since, as

explained in the preceding article the velocity in pipes is never

uniform, the kinetic energy of water in a pipe is given by the

formula,

A'£=aTT'|, (5)

in which a, a coefficient depending for its value upon the distri-

bution of velocities in the pipe, is always greater than unity.

Experiments by Bazin and others indicate that for a straight

pipe, a has a mean value of about 1.06.

In problems involving the flow of water in pipes it is common
to assume that the velocities at all points of a cross-section are

equal, or that a equals unity and therefore, the Icinetic energy

iP
contained in 1 lb. of water (or the velocity head) is equal to jj-.

Bernoulli's equation, when written between two points in a fila-

ment, then applies to the entire cross-section in which the points

lie. The error introduced by assuming a equal to unity is not

usually of serious consequence.

93. Continuity of Flow in Pipes.—In any pipe flowing full,

within the limits of error resulting from the assumptions that

water is incompressible and the pipe inelastic, at any given

instant the same quantity of water is passing every cross-section

of the pipe. This statement implies continuity of flow (see

Art. 41) and holds true even when the flow is unsteady, a

condition which exists when the head producing discharge is

variable.

94. Loss of Head.—If there were no friction losses, the

velocity at which water would discharge from a pipe. Figs. 94

and 95, would be vt = V2gH, the same as for an orifice. For
a horizontal pipe of uniform diameter, Fig. 94, there would be no
pressure other than that resulting from the weight of water
within the pipe and water would not rise in the piezometer tubes
at m and n. In any long pipe or system of pipes, however, by
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far the greater portion of the total head, H, is used in overcoming

friction.

If there is no change in the diameter of a pipe, the difference

in height of water columns in piezometer tubes at any two

sections measures the loss of head due to friction between those

sections. In Fig. 94 the loss of head between sections at m and

n is hm—hn- In Fig. 95, which represents a system of pipes of

different diameters, hi—hm is the loss of head between sections

at I and m plus the increase in velocity head at m over that at I.

Fig. 94.—Pipe discharging from reservoir.

Similarly, hm—hn (Fig. 95) is the loss of head between sections at

m and /; minus the decrease in velocity head.

Considering the system of pipes illustrated in Fig. 95^ Ber-

noulli's equation may be written between a point (S in the water

sm-face and another point E at the outlet as follows:

fs^
I
Ps ve''

,
pE

2g w 2g w (6)

Hi being the total loss of head from all causes and the remainder

of the nomenclature being as indicated in the figure. Since Vs

may be considered as equal to zero and ps=pe= atmospheric

pressure, equation (6) reduces to

Zs—Ze=2Z-+Hi,

or since Zs-Ze=H, the total head

H=^+Hi.

(7)

(8)
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This means, that for a pipe discharging into the air, the

total head is equal to the velocity head at the end of the pipe

plus the sum of all friction losses. Since the velocity head at

exit must be provided out of the total head, H, it is usually con-

sidered in the same manner as lost head. It should be remem-
bered, however, that as the water leaves the pipe it still retains

the energy represented by its velocity head.

In the case of a pipe connecting two reservoirs. Fig. 97, the

water in the upper reservoir has a velocity of zero and it finally

comes to rest in the lower reservoir. The reservoirs may be

considered as parts of the pipe system in which the velocities

Fig. 95.—Pipe of more than one diameter.

are zero, the entire head, H, being utilized in overcoming friction;

whence

Frictional losses result from various causes. In any pipe in

which the diameter remains unchanged and there arc no con-
ditions tending to disturb a regular distribution of velocities, the
only loss of head is that due to the combined effects of viscosity

and friction between the moving water and the surface of the
pipe. This loss of head is commonly referred to as loss of head due
to friction. Other losses of head are those which result from
changing the velocity or direction of flow.

In ordinary pipe hnes the loss of head due to friction is the

greater portion of the total head. Frequently all other losses

are so small in comparison as to be negligible. Cases arise,

however, which require careful consideration of these losses and
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serious errors may result from neglecting them. Losses of head
other than the loss of head due to friction are commonly known
as minor losses.

The following are the principal causes of loss of head in

pipes, together with the symbols which will be used to designate

these losses. (All losses except (a) are minor losses.)

(a) A continuous loss of head due to friction between the

moving water and the inner surface of the pipe, and to viscosity.

This loss is commonly referred to as the loss of head due to friction,

and is designated by the symbol hf.

(6) A loss of head at the entrance to a pipe, ho, the loss occurring

where the very low velocity in the reservoir (usually considered

zero velocity) changes to the velocity in the pipe. This is called

the loss of head at entrance.

(c) A loss of head, ha, which occurs where a pipe discharges

into a reservoir or other body of comparatively still water. This

will be called the loss of head at discharge.

(d) A loss of head, he, at the place where a pipe changes to a

smaller diameter thus causingan increase invelocity . This is called

loss of head due to sudden or gradual contraction, depending upon
whether the contraction takes place abruptly or by means of a

tapered connection between the two pipes allowing the change

in velocities to be made gradually. The loss of head at entrance

(referred to under (6) above) is evidently a special case of loss

due to contraction.

(e) A loss of head, he, at the place where a pipe changes to a

larger diameter thus causing a decrease in velocity. This is

called loss of head due to sudden or gradual enlargement, depend-

ing upon whether the enlargement takes place abruptly or by

means of a tapered connection between the two pipes allowing

the change in velocities to be made gradually. The loss of

head at discharge (referred to under (c) above) is evidently a

special case of loss of head due to enlargement.

(/) A loss of head, hg, caused by obstructions in a pipe line,

such as gates or valves. Obstructions cause the water to pass

through a restricted area for a short distance, thus causing first

a sudden increase in velocity and then a sudden return to the

original velocity. This will be called the loss of head due to

obstructions.

(g) A loss of head, h, at bends or curves in pipes, in addition
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to the loss which occurs in an equal length of straight pipe.

This is designated the loss of head due to bends.

If the symbol Hi is used to designate all losses of head in a

pipe line, the loss of head due to friction being represented by

hf and all minor losses by H2,

in which
Hi = hf-\-H2,

H2 = ho+hd+he+he+hg+ht.

(9)

(10)

95. Hydraulic Gradient.—The locus of the elevations to which

water will rise in a series of piezometer tubes inserted in a pipe

line is called the hydraulic gradient or hydraulic grade line.

The hydraulic gradient of a straight pipe of uniform diameter

having the same degree of roughness of interior surface through-

out is a straight line. In Fig. 94 the line ac is the hydraulic

gradient for the pipe. Where a pipe changes in diameter or

where for any reason there is a change in velocity or direction

of flow, there is a break in the hydraulic gradient, the change

in elevation being the combined effects of the change in velocity

head, where velocity changes occur, and the loss of head duo

to friction or turbulence. The broken line 010261620102^1^26,

Fig. 95, represents the hydraulic gradient for the system of pipes

shown. The hydraulic grade line thus indicates all losses of head

and changes in velocity head.

Fia. 96.

96. Loss of Head Due to Friction in Pipes.—Fig. 96 represents

a straight pipe without obstructions or changes in diameter.

The loss of head, h;, in the length I is a measure of the resistance

to flow. The laws governing this loss are intricate and are not

subject to exact analysis. There are, however, certain general laws
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which are in the natm-e of conclusions resulting from observation

and experiment, which appear to govern fluid friction in pipes

and which are expressed in the most generally accepted pipe

formiilas now in use. These laws may be briefly stated as

follows:

(a) Frictional resistance is independent of the pressure within

the pipe, and other things being equal:

(b) Friction between moving water and the inner surface of

the pipe increases with the roughness of the sm-face. This may
be expressed as a coefficient K whose value increases with the

degree of roughness of the pipe.

(c) Friction between moving water and the inner surface of a

pipe is directly proportional to the area of the wetted surface;

that is, it is proportional to the product of the wetted perimeter

and the length or irdl, d being the diameter and I the length of

the pipe.

(d) As the cross-sectional area of the pipe increases, the

retarding influence of viscosity becomes less, and it usually is con-

sidered to vary inversely as some power of the area, and there-

fore of the diameter or as 1/ c? .

(c) Frictional resistance varies directly as some power of the

velocity, or as y".

(/) Frictional resistance increases with the ^dscosity and

therefore inversely with the temperature. This factor is usually

omitted from pipe formulas, coeffiuients being selected which apply

to average air temperatures.

Combining the factors expressed in (6), (c), (d) and (e) above,

the total head lost is represented by the equation,

h^=KXirdlX^Xv", (11)

or substituting K' and m for KXir and a;— 1 respectively, the

general expression for loss of head due to friction in pipes may

be written,

hf^K'^V, (12)

—= s, formula (12) may be transposed to the form

/ 1 \« 5 1
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or substituting K" for I -—7) , y for — , and z for -,

v = K"d''s', (13)

or since the hydraulic radius r, for a circular pipe flowing full,

equals d/4, or d=4r, formula (13) may be written,

v = K"X4:''XrvXs',

or substituting K'" for 4''Z",

v=K"'f^ (14)

Each of the above formulas, though expressed differently, con-

tains all of the factors, excepting temperature, which are believed

to affect fluid friction. The base formulas for friction losses in

pipes are commonly written in any of the three forms expressed

by equations (12), (13), and (14).

The further consideration of loss of head due to friction in

pipes must be purely empirical. The values of coefflcients and

exponents to be applied to the base formulas are determined

from the available experimental data. Of the large number of

published formulas for determining the loss of head due to friction

in pipes, only a few are given.

It should be kept in mind that in all of the following formulas,

hf, I, d and other linear quantities must be expressed in feet

and V must be expressed in feet per second.

97. The Chezy Formula.—This formula deserves a place of

prominence among pipe formulas not only because it represents

the first successful attempt to express friction losses in algebraic

terms, but also because it embodies all of the laws of fluid friction

as they are understood and applied at the present time, and with

certain modifying factors that have been found necessary, its

use is now more general than that of any other formula either

for pipes or open channels.

As written by Chezy in 1775 this formula is

v= CVrs, ....... (15)

city, r is the hydraulic radius and s= y
is the rate of slope of the hydraulic gradient. It will be observed

L

in which v is the mean velocity, r is the hydraulic radius and s= y
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that formula (15) is of the same form as (14), y and z being each

\ and C being substituted for K'".

The coefficient C was supposed by Chezy to be constant,

but it is now known to vary with the degree of roughness of

the surface with which the water comes in contact as well as

with the velocity and hydraulic radius (or diameter). Since C
appears to be a function of v and r the Chezy formula evidently

does not accurately express the law of fluid friction. In the ideal

formula, the coefficient would vary only with the roughness of

the channel, and many attempts have been made" to obtain a

formula with such a coefficient expressing «) as a function of r

and s. These attempts have met with rather indifferent success.

Formula (15) is used with an accompanying table giving

values of C for different velocities, diameters, and kinds of pipe.

The table on page 148 gives approximate average values of C for

four different kinds of pipe, as obtained from the available experi-

mental data.

In an account of experiments on the flow of water in pipes,

published by Darcy ^ in 1857, he expressed the Chezy formula

in the form,

''^=41' (1«)

the relations between C and/ in formulas (15) and (16) being

f=% and C= 2^??

It will be observed that formula (16) may be obtained from

formula (12) by writing n= 2 and m= l, the two formulas being

of the same general form.

From his experiments Darcy deduced the following values of

/, as representing the mean of his observations.

For new, clean cast-iron pipes, d being the diameter of the

pipe in feet,

For old cast-iron pipes,

•^=0-04+12d--

1 M. H. Darcy: Recherches Exp^rimentales Relatives au Mouvement

de I'eau dans les Tuyaux. Paris, 1857.
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Later experiments have indicated that / (similar to C in

formula (15) ) varies with v as well as with d. Formula (16),

the same as formula (15), is used more satisfactorily with an

accompanying table of coefficients. The table on page 149 gives

average values of / for different kinds of pipe. The two formulas,

(15) and (16), used in connection with the coefficients tabulated

on pages 148 and 149, respectively, will give the same results.

The formula is written in the two forms merely as a convenience

in solving different types of problems.

The values of C and / given in the tables on pages 148 and 149

refer not only to pipes of the particular materials listed but to

any pipes of similar degrees of roughness. The problem of

selecting the proper coefficient for a given condition is one with

which the engineer is continually confronted, and in making such a

selection experience is the best teacher. It is important to know
the most probable value of a coefficient and the maximum per

cent of error likely to result from its use. The average values of

C and / listed in the tables may give results in error as much as

20 per cent plus or minus.

The following values of / for 2|-in. fire hose are given by
Freeman:

Values of/ in Chezy Fobmula ron 2J-in. Fibe Hose

Description.
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words the aim was to select values for exponents such that Ci
would be, as nearly as practicable, a function only of the degree

of roughness of the channel and not of r and s. The following is

written by the authors ^ of the formula.
" If exponents could be selected agreeing perfectly with the

facts, the value of Ci would depend upon the roughness only,

and for any given degree of roughness Ci would then be a constant.

It is not possible to reach this actually, because the values of the

exponents vary with different surfaces, and also their values may
not be exactly the same for large diameters and for small ones,

nor for steep slopes and for flat ones. Exponents can be selected,

however, representing approximately average conditions, so that

the value of Ci for a given condition of surface will vary so little

as to be practically constant. Several such ' exponential

'

formulas have been suggested. These formvdas are among the

most satisfactory yet devised, but their use has been limited by
the difficulty in making computations by them. This difficulty

was eliminated by the use of a slide-rule constructed for that

pin-pose.

" The exponents in the formula used were selected as repre-

senting as nearly as possible average conditions, as deduced from

the best available records of experiments upon the flow of water

in such pipes and channels as most frequently occur in water-

works practice. The last term, 0.001" '

, is a constant, and

is introduced simply to equalize the value of Ci with the value

in the Chezy formula, and other exponential formulas which may
be used, at a slope of 0.001 instead of at a slope of 1."

Since 0.001
"*'"*=

1.318, the formula may be written,

r)=1.318Cir''«V** (18)

The authors of the formula give the following values of Ci for

pipes:

For extremely smooth and straight pipes . . . . Ci = 140

For very smooth pipes Ci = 130

For new riveted steel pipes Ci = 110

For estimating discharges of pipe fines where the carrying

capacity after a series of years is the controlling factor, values of

1 Williams and Hazen: Hydraulic Tables. Third Edition, 1920.
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Ci = 100 for cast-iron pipe and Ci = 95 for riveted steel are

recommended. For the smaller sizes of pipes a somewhat lower

value of Ci should be used.

For smooth wooden pipes or wooden-stave pipes, Ci = 120.

For vitrified pipes, Ci = 110.

For old iron pipes in bad condition, Ci = 80 to 60, and for

small pipes badly tuberculated, Ci may be as low as 40.

99. King Formula.—Consider the base formula (12), which

for convenience of reference is here repeated,

hf^K'p' (12)

It has been found from experiments on a great many kinds and

sizes of pipes that no value of n can be found which does not

vary under different conditions of flow. The extreme range of

variation, from investigations by Lea ^ and others, is from about

1.75 to 2.08. On the other hand, it appears that a mean value

of m of 1.25 may be assumed without introducing any serious

inconsistencies. Formula (12) has therefore been modified by

Lea to the form,

hy= KlJj-^V'', (19)

Ki and n each being given variable values depending upon the

degree of roughness of the pipe.

The formula also may be written.

I v'

in which
_2gKi

h,=K^,^^, (20)

K=-

Formula (20) expresses the loss of head due to friction as a

function of the velocity head. This is sometimes convenient

since miner losses are usually thus expressed (Art. 102). The
formula is somewhat simpler to use than a formula in which v

has a fractional exponent. On the other hand, since K varies

1 F. C. Lea: Hydraulics, p. 139. H. W. King: Handbook of Hydraulics,

o. 159.
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only with v and not with d, a much simpler table of coefficients

is required for formula (20) than is required for the Chezy formula.

Average values of K to be used with formula (20) are given in

the table below. These values are the same as the values of /
on page 149 for d= 12 inches.

I t)2

Values op K in the Formula hr=K—roi—

^"elocity,
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Formulas (15), (16), (20) and (21), when used with their

accompanying tables of coefficients, all give the same results.

100. General Discussion of Pipe Formulas.—The foregoing

formulas represent the more common types of formulas for deter-

mining the loss of head due to friction in pipes. There are an

indefinite number of formulas, many of which possess merit.

The choice of one formula over another is not of so great impor-

tance as the careful and intelligent use of the formula after it is

selected. The engineer should select the formula for general

use which he beHeves to be in the most convenient form, and

after adopting it he should endeavor to become familiar with its

coefficients. The tables contained in this volume are sufficient

for class room exercises, but the practicing engineer should

extend his knowledge of coefficients by study and observation,

and obtain values from actual measurements whenever the

opportunity offers.

101. Friction Formula for Non-turbulent Flow.—If t>' is

the velocity in feet per second, di the diameter of the pipe in

inches, hf the friction loss in a length I, and P the viscosity

coefficient (formula (3), Art. 90), the velocity in a pipe where

stream-line flow exists according to Reynolds is

v'=^^^. (22)

If a case be assumed where dj=l in., fe/=l ft. and 1 = 100 ft.,

v' for a temperature of zero degrees Centigrade is 3.61 ft. per

second, and for higher temperatures the velocity would be greater.

The table on page 138 shows this velocity to be above the higher

critical velocity and the flow must be turbulent. Formula (22)

therefore does not apply and one of the formulas for turbulent

flow should be used.

102. Detailed Study of Hydraulic Gradient and Minor Losses.

—In the discussion of loss of head due to friction (Art. 96), it

has been shown that, other things being equal, the loss of head

varies as v" and that usually n is less than 2 but does not vary

greatly from this value. In some formulas, therefore, this loss

of head is expressed as a function of the velocity head and coeffi-

cients varying in value with v are appUed to the formulas to make
them represent average friction losses as given by experiments.

In a similar manner it has been found that minor losses (Art.
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94) vary roughly with the square of the velocity and they are

commonly expressed in formulas as functions of the velocity

head. Variable coefficients are then apphed to these formulas

so as to make them give losses in accordance with the available

experimental data. These losses (see Art. 94) expressed alge-

braically are

y2 y2 2j2

ho= Ko2Z> ^i~
^^2a' ^''~ ^'20' ^^^''

and formula (10), page 144, may be written,

flj2 nt2 a,2 fll2 fll2 fl2

In the above equation, ?; is a general expression for velocity.

It is the velocity in the pipe where the loss of head occurs and

in case of enlargement or contraction it is the velocity in the

smaller pipe. Kq, Ka, Kc, etc., are variable coefficients whose

values must be determined from experiments.

Fig. 97 illustrates entrance and discharge conditions for a

pipe leading from one reservoir into another reservoir at a lower

elevation. The water starts with zero velocity in the upper

reservoir, finally coming to rest in the lower reservoir, and all

of the energy represented by the difference in elevation of water

sm-faces is utilized in overcoming resistance.

In Fig. 97, aia2 represents the hydraulic grade line which

results from changing the velocity of the water from zero to the

velocity which it attains in the pipe. The vertical distance

between ai and a2, that is, the distance which 02 is below the

surface of the water, is the velocity head or v'^/2g, where v is the

mean velocity in the pipe. The line aia2 must be considered as

the hydraulic gradient of some particular filament of water, such as

xy, since points in other filaments which are the same horizontal

distance from the entrance to the pipe may have different veloci-

ties and therefore different hydraulic gradients. It may appear

that the pressure at any point in the filament should be that due

to the weight of the water column above it. This would be true

if the laws of hydrostatics might be applied. The laws of hydro-

statics do not, however, apply to water in motion, the pressure

being less than it would be at the same depth for water at rest.

That this is true has been proved experimentally. It also follows

from writing Bernoulli's equation between a point x where the
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velocity is practically zero and a point y at the entrance to the

pipe where the velocity equals v, the velocity in the pipe. Assum-
ing the points to be of the same elevation the equation becomes

or since Vx is practically zero,

hv = h.-^^. (24)

The head lost at entrance to a pipe takes place within a distance

of about two or three diameters from the entrance and is similar

to the loss of head in a short tube. The line 0203, Fig. 97, is

the portion of the hydraulic gradient which shows this loss of

Fig. 97.—Pipe connecting two reservoirs.

head. There is a depression in the hydraulic gradient at a'

because of the contraction of the jet. Vertically below 03, the

jet has expanded and fills the tube. The head lost at entrance is

the vertical distance between a2 and as, or ho.

Since the first two or three diameters of a pipe are similar to

a short tube, entrance losses for pipes may be considered to be
the same as for short tubes. The general formula for loss of

head at entrance to a pipe is then (formula (22), page 81),

/I \ v^ v^

(25)

in which the coefficient of discharge, C, depends for its value upon

the conditions at entrance, and Ko = -7^—l. For convenience of
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reference, values of C and Kq given in Chapter VII, are repeated

in the following table

:

Coefficients for Determining Loss of Head at Entrance to Pipes

Entrance to pipe
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The loss at discharge is the special case of loss of head due to

sudden enlargement in which the ratio of smaller to larger dia-

meter is practically zero. Values of Ka may therefore be taken

from column 2 of the table on page 161. Since these values are

nearly unity for the ordinary velocities encountered in pipes it is

commonly considered that the entire velocity head is lost.

Change in gradient resulting from sudden contraction in pipes

is illustrated in Fig. 98. If there were no loss of head between

any two points, on opposite sides of the contracted section, the

difference in heights of water columns in two piezometer tubes as

h and e, above these points would measure the gain in velocity

head. If the two points are considered so close together that

pipe friction may be neglected, the difference in height of water

ES T,/ 2 W S \

Fig. 98.—Sudden contraction in pipe.

columns h and e measures the gain in velocity head plus the loss

of head due to sudden contraction.

The hydraulic gradient as determined experimentally is

illustrated by the line abcdef. There is a depression at d, due
to contraction of the jet, similar to the depression at a' in the

hydraulic grade line of Fig. 97. The piezometer tube c measures
the pressure in the corner where there is little or no velocity.

If piezometer tubes, c and d, were arranged to meastire pressures

near the axis of the pipe where the velocities are higher, the

hydraulic gradient would be below bcde and wox'ld resemble

bc'd'e.

It is important to note that the ordinary piezometer tube,

which is set flush with the inner surface of the pipe, measures
the pressure at the surface of the pipe but does not necessarily

measure the pressure at points in the same cross-section at some
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distance from the surface. In smooth straight pipes the differ-

ence between pressures at the surface and interior points is prob-

ably not great but the difference may be quite large near sections

where changes in diameter occur.

The loss of head due to sudden contraction expressed as a

function of the velocity head is

y2

(29)

in which Kc is an empirical coefficient, and v is the velocity in

the smaller pipe. The following table gives experimental values

of Zc.

Values of the Coefpicent K,, for Sudden Contraction

Velocity in

smaller pipe,
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(page 85) between the two pipes is used, Kc may become prac-

tically negligible.

Change in gradient resulting from sudden enlargement is shown

in Fig. 99. In this case the change in height of water columns

in piezometer tubes b and e, before and after enlargement,

measures the gain in pressure head and this gain is equal to the

loss in velocity head minus the loss of head due to sudden

enlargement, the loss of head due to pipe friction being assumed

so small as to be negligible. This may be verified by writing

Bernoulli's equation between points on either side of the enlarge-

ment.

The hydraulic gradient as plotted from experiments by

Gibson is abode. The pressures shown by tubes c and d being

• - -
'1^

—

ip,
—

Fig. 99.—Sudden enlargement in pipe.

measured at the surface of the pipe are undoubtedly less than if

they were measured near the center of the pipe. In this case

the piezometer tube c would read practically the same as the

tube b and the pressure would be greater than that indicated.

The portion of the hydraulic gradient bcde would then be similar

to bc'd'e.

The loss of head due to sudden enlargement expressed as a

function of the velocity head is

he-K.^. (30)

Archer ^ has shown from an investigation of his own experi-

' W. H. Archer: Loss of Head Due to Enlargements in Pipes. Trans.

Amer. Soc. Civ. Eng., vol. 76, pp. 999-1026 (1913).
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ments and the experiments of others that K is quite accurately

represented by the formula,

/Je =1.098

-

2g
(31)

in which v is the velocity in the smaller pipe and vi is the velocity

in the larger pipe. Experiments at the University of Michigan

indicate that Archer's formula holds quite accurately in the

limit where vi is zero. In this case the conditions become those

of loss of head at discharge, discussed on page 157.

By equating the values of K given by equations (30) and (31)

and transposing, the following value of Ko is obtained:

K,=
1.098

(-5) (32)

d/di being the ratio of the smaller to the larger diameter. The

following table of values of Ki are computed from formula (32)

:

Values of the Coefpcient Kg, for Sudden Enlakqement

Velocity in
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Values of the Coeppcient Ke, por Gradual Enlarqembnt

Angle between axis
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equal length of the same kind of straight pipe. From a careful

investigation of the available experimental data Fuller ^ deduced
the following empirical formula,

^ = cy='^^ (34)

ht, being the loss of head due to bends in excess of the loss which

would occur in an equal length of straight pipe, v being the

mean velocity in the pipe and c being a coefficient whose value

varies with the radius, R, of the axis of the pipe expressed in

feet. Fuller gives the following values of c for bends of 90°:

For i2= 0,c= 0.0135; for /?= 0.5, c = 0.0040; for i?= l, c = 0.00275;

for E= 3, c= 0.0024; for R = Q, c= 0.0023; for 72=10, c= 0.00335;

for E= 20, c= 0.0060; for i2= 30, c= 0.0070; for ft = 40, c = 0.0075;

for i2 = 60, c= 0.0086.

Following the form used for other losses,

h = K,^^, (35)

and equating the right-hand members of equations (34) and (35)

and reducing,

Kt = 2gcv'''^ (36)

From this formula the values of Kb given in the following table

have been computed:

Values of the Coefficient, ifj, for Loss of Head Due to Bends op 90°

Mean
velocity
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pipe is from 2 to 6 ft. For bends of 45° the coefficients will be

about three-fourths and for 22|° about one-half of the values

given in the table.

103. Part of Pipe Above Hydraulic Gradient.—Fig. 100 shows

a pipe of uniform diameter leading from a reservoir and discharg-

ing under the head H. The summit, M, is a distance y above the

straight line BeC but at a lower elevation than the water surface

in the reservoir. Two conditions will be considered: first,

where y<— °, and second, where y>——— , pa being atmos-

pheric pressure and po being the vapor pressure corresponding

to the temperature of the water in the pipe.

Assume the pipe AMSC, Fig. 100, to be empty when water

Fig. 100.—-Part of pipe above hydraulic gradient.

is turned into it at A. Water will first rise to the summit M
and begin to flow down the decline toward the depression S,

at which point it will collect and seal the pipe entrapping air

between M and S. Eventually water will discharge from the

outlet C. If the velocity is high enough the air entrapped

between M and *S will be removed by the flowing water, other-

wise it will remain there and obstruct the flow. In such cases

the air may be removed by a suction pump at the summit. If

there is no air in the pipe and y<
Pa—pv

, assuming the loss

of head to be uniform, the hydraulic gradient will be the straight

line BeC and the flow will be the same as though all of the pipe

were below the hydraulic gradient.

If y>———, the flow of water will be restricted, even though

all air is exhausted from the pipe, and the hydraulic gradient
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will no longer be a straight line. This condition is illustrated

in Fig. 100. The hydraulic gradient is a straight line to a point,

D, which is a distance d =——— below the summit, M. At M
w

(assuming no air in the pipe) the absolute pressure in the p"pe

is the vapor pressure corresponding to the temperature within

the pipe and this pressure continues on down to N, the pipe

flowing partially full between M and N. Throughout all por-

tions of the pipe flowing full the velocity must necessarily be the

same since the discharge is constant and therefore, assuming a

uniform degree of roughness for the pipe, the slope of hydraulic

gradient in such portions must be uniform. In other words,

the slope of EC must be the same as the slope of BD. Through-

out the distance where the pipe is not flowing full, the hydraulic

gradient, represented by the line DE, is the same vertical distance,

d, below the water surface in the pipe. The point E is the

intersection of the line CE, parallel to BD, and the line DE.
The section at N where the pipe begins to flow full is vertically

above E.

The conditions of flow, especially at low velocities, are not

usually as favorable as those described above, because of the

tendency of air to collect at a summit. Water flowing at low

velocities will not remove air and may even liberate it, and

cause air to collect at high places such as M, Fig. 100. The
condition will be worse at summits above the hydraulic gradient

if the pipe leaks, since the movement of air will be inward. In

such cases the occasional operation of an air pump at the summit

will be necessary to remove the air. At a summit below the

hydraulic gradient, where the pressure within the pipe is greater

than atmospheric, the air which collects may be removed through

a valve.

Air at a summit which is below the elevation of the water

surface will not stop the flow of water entirely but will cause a

portion of the pipe to flow partially full. Summits in pipe lines

are always objectionable, and especially so are summits above the

hydraulic gradient. Where they cannot be avoided special pro-

vision should be made for removing the air which collects.

104. Special Problems.—Pipe hnes may be composed of

pipes of several diameters connected in series, or they may branch

in different ways so as to divide the flowj thus presenting a
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variety of problems. Oftentimes such problems may be solved

more readily by trial solutions, though some formulas may be

derived which are of assistance. A few special cases are given

in the following pages. Problems of this type are encountered

frequently in designing mains for city water supplies.

If the pipes are long (1000 diameters or more) the minor

losses will ordinarily be comparatively small and ai'e usually

neglected. If, however, it is desired to include these losses, a

solution should be made first neglecting them and then correcting

the results to include them.

106. Branching Pipe Connecting Reservoirs at Different

Elevations.

—

A, B and C are three reservoirs connected by

pipes 1, 2 and 3, as shown in Fig. 101. Let h, di, Qi and vi

iiitfijjitii tt)rA

FiQ. 101.—Branching pipe connecting throe reservoirs.

represent, respectively, the length, diameter, discharge and mean
velocity for pipe 1, and the same symbols with subscripts 2
and 3, the corresponding terms for pipes 2 and 3. If a piezom-
eter is assumed to be at the junction P, the water surface in

the tube will be a certain distance, hx, below the surface in reser-

voir A . The surface of reservoir JS is a distance Hb = /ii+A2 below

that of reservoir A and the surface of reservoir C is Hc= hi+h3
below the surface of reservoir A. If hiKHs, reservoir A will

supply reservoirs B and C. If hi>HB, reservoirs A and B will

supply reservoir C. There are many problems suggested by this

figure, in which certain quantities are given with others to be
determined. Methods of solving three of these problems are

given.

Case 1.—Having given the lengths and diameters of all pipes,

and elevations of the three reservoirs; to determine Qi, Q2
and Q3.
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This problem is most conveniently solved by trial. Assume

Qi and solve for hi. Then using Hb minus this computed value

of hi for /i2, the loss of head due to friction in pipe 2, solve for

Q2. Similarly, using He minus the computed value of hi for

friction loss, hs, in pipe 3, solve for Q3. Evidently Qi = Q2+Qs,
Q2 being negative if the direction of flow is from B toward P
The correct value of Qi will lie between the assumed value and

the computed value of Q2+Q3. Continue to assxmae new values

of Qi, between these limits, and repeat computations until

Qi = Q2+Qz.
It may be found helpful in making assumptions to plot com-

puted values of Qi, Fig. 102,

against the error made in each

assumption, that is, against Qi—
(Q2+Q3). The resulting differ-

ence may be either plus or minus.

If the assumed values of Qi are

well selected they will define a

curve whose intersection with the

Qi-axis will give the discharge as

accurately as is usually required.

The points should be on both sides of the Qi-axis and preferably

one of the points should be quite close to it. Usually not

more than three trial solutions will be necessary.

This problem may also be solved analytically. Assuming

any formula for pipe friction, as, for example, the Chezy formula.

10 9 8 1 6_6 4 3 2 1 1 2 3 4 6^6 1 8 9 10

Qi-(Qs+Qb)

Fig. 102.

also

and

From Fig. (101),

, J.
I2 v^

^^=^^J22'g'

HB=hi+h2,

and substituting the above values of hi and h2,

„ , h vi^.f h V2^

"''-^'di2^-^f'd22^'
(37)
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and in a similar manner,

also since Qi = Q2+Qz

di^vi=d2^V2+ds^V3 (39)

By solving equations (37), (38) and (39) simultaneously, vi, V2

and vz may be determined if the other quantities are given.

Since /i,/2 and /a are dependent upon vi, V2 and 1^3, respectively

for their values, the equations must first be solved with assumed

friction coefficients, to be corrected after the first solution for

velocities has been completed. With these corrected values of

/i, h and fz, another solution of the equations for more accurate

values of z)i, V2 and vz may be made.

Case 2.—Having given the lengths and diameters of all pipes,

Qi, and the elevations of water surfaces in reservoir A and one

of the other reservoirs as 5; to determine the elevation of water

surface in reservoir C.

Using Qi, determine the lost head, hi, in pipe 1. Then
li2=HB—hi is the lost head in pipe 2, using which, Q2 may be

computed. Q2 will be plus or minus depending upon whether the

direction of flow in pipe 2 is towards B or P. Then Qz = Qi— Q2-

With Qz determined, the head lost in pipe 3 may be computed,

and the elevation of water surface in reservoir C obtained.

Case 3.—Having given the lengths of all pipes, the elevations

of water surfaces in all reservoirs, Qi, and the diameters of two
pipes as di and ^2; to determine dz.

Determine hi, Q2 and Qz as for Case 2. Then with Qz and
hz=Hc—hi known, compute dz.

106. Compound Pipe Connecting Two Reservoirs.—The reser-

voirs A and B are connected by a system of pipes as shown in

Fig. 103. Pipe 1 leading from reservoir A divides at S into

pipes 2 and 3 which join again at T. Pipe 4 leads from the
junction T to a reservoir B. Let Zi, di and vi be respectively

the length, diameter and mean velocity for pipe 1, and the same
symbols with subscripts 2, 3 and 4 the corresponding quanitites

for pipes 2, 3 and 4. Q2 and Qz are the respective discharges
for pipes 2 and 3, the sum of which discharges equals Q, the total

discharge through pipes 1 and 4. Assuming piezometer tubes
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at S and T, H is the total head lost in the system of pipes, hi

is the head lost in pipe 1, h2=h3 is the head lost in pipes 2 or 3,

and ^4 is the head lost in pipe 4. Before taking up any of the

special problems suggested by this figure a general analysis will

be given.

Any of the formulas for determining loss of head due to

friction may be employed. It will be found advantageous to

use a formula whose coefficient does not vary with the diameter,

izzzzzzzzzzzzz

^zzzzzzzzzzzzz.

Fig. 103.—Compound pipe.

but a fractional exponent for v will be objectionable. Formula

(20) has, therefore, been selected. Since /i2 = ^s, from formula (20)

,

also

2g 'd3'-''2g'
(40)

Q2 4Q2 , Qs 4Q3
W2=-^ = -T-^= and V3=— =—5-5,

02 7ra2 0,3 irda''

writing these values of V2 and V3 in equation (40),

I2 I6Q22 1 ^ I3 I6Q32 1
K2

dz'-'' x^da* 2g ^^ d3''' x^da* 2g- (41)

Since in formula (20) K varies only with the velocity and not

with the diameter, the error introduced by assuming K2 =K3
wUl not be important unless vi and V2 are widely different. Assum-

ing them equal and canceling,

h
dz'

iQ2^ =AQ3^d3'

or

Q:-<^m

(42)

(43)
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Placing

^-m^ <-'

Q3 = FQ2, (45)

and since

Q2+Q3 = Q, (46)

Q2+FQ2 = Q, (47)

and

Q2 =ifp (48)

Therefore to determine approximately (within the limits of the

error introduced in assuming ii^ to be a constant) the quantity of

water passing through pipe 2 divide the total discharge by 1+F
and the total discharge minus Q2 gives Q3.

The expression for loss of head may be written,

H = hi+h2+hi (49)

The losses of head in the pipes 1, 2 and 4 may be expressed by

either formula (16) or (20). Using (20), the expression for lost

head becomes

But

v. =^—% (51)

Q2 4Q2 4Q
U2- — —

and

"^
aa •^rdz^ {l+F)Trd2^>

^^^^

Q 4Q

Substituting these values of vi, V2 and Vi in equation (50) and
reducing

16QY I, ?2 h \ ,^,,

If formula (16) in place of (20) had been used in writing equation

(50) the above formula would be

16QY I, ;,
;,x
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In formulas (54) and (55) the coefficients are not constants.

Ki, Kz, and Ki vary with the velocity and /i, /a, and /* vary
both with the velocity and diameter. Formula (54) wiU be more
convenient in solving problems where all diameters are not known
since Ki, K2, and Ki do not depend upon the diameter for their

value. Three types of problems are explained below.

Case 1.—Having given the lengths and diameters of all pipes

and the total lost head; to determine Q.

Determine F by formula (44), then determine an approxi-

mate value of Q from formula (54) or (55) estimating the velocities

in pipes 1, 2 and 4 for obtaining trial values of Ki, K2 and Ki,
or /i, /a and fi. If the estimated velocities were not too much in

error this solution may give the value of Q as accurate as is

desired; otherwise with the value of Q obtained by the first

solution determine the velocities and corresponding values of

coefficients in the three pipes and again solve equation (54) or (55)

for Q. The second solution should always give Q within the desired

degree of accuracy.

To check the result, from the computed value of Q determine

hi and hi, then using H—Qii+hi) as the friction loss in pipes 2

and 3 compute Q2 and Q3. The results obtained should show

Q approximately equal to Q2+Q3. If closer agreement between

the computed values of Q and Q2+Q3 is required than may be

obtained readily by this method the results may be adjusted by
trial solutions. Since there is always uncertainty as to the

proper value of coefficients to use, it is not usually desirable to

work for too close an agreement.

If preferred this problem may be solved entirely by trial

but it will save time in trial solutions to determine first by
formulas (44) and (48) the portion of the total flow that passes

through one of the branching pipes. Then successive values of

Q may be assimied and the lost head in each pipe computed until

the smn of the losses in the three pipes equals the total lost head.

A final check should be made to see that Q equals approximately

Q2+Q3.
Case 2.—Having given the discharge, diameters and lengths

of aU pipes; to determine the total lost head.

The lost head, H, may be determined from equations (44)

and (54).

If preferred Q2 may be first obtained from formiolas (44) and
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(48) and Qs from formula (45). Then using these discharges,

compute the head lost in pipes 2 and 3. These should be equal.

If the computations do not show them equal adjust the dis-

charges by trial (reducing the discharge in the pipe showing the

greater loss of head and increasing by the same amount the

discharge in the other pipe), and again compute the head lost in

each pipe. Repeat the assumption and computations until the

losses of head in each of the pipes become the same or until the

agreement is close enough for the purpose. This loss of head

plus the loss of head in pipes 1 and 4, which may be computed

in the usual manner, gives, H, the total lost head.

Case 3.—Having given the discharge, the total lost head, the

lengths of all pipes and the diameters of three pipes; to deter-

mine the other diameter.

Assume that the diameter of pipe 2 is to be determined.

Compute the head lost in pipes 1 and 4 by one of the formulas

for determining loss of head due to friction. Deduct from the

total lost head the smn of these computed losses. With this

difference, which is the head lost in each of pipes 2 and 3, deter-

mine Qs- Then, Q2 = Q— Q3. With Q2 known, and the lost

head determined as described above, compute the diameter of

pipe 2.

If the diameter of one of the single pipes, as for example,

pipe 4, is to be determined, compute the head lost in pipe 1,

as described in the preceding paragraph and also the head lost

in the branching pipes 2 and 3 as described under Case 2. The
difference between the total lost head and the sum of the above
losses is the head lost in pipe 4, from which the diameter of this

pipe may be computed.

107. Pipes of More than One Diameter Connected in Series.

—Fig. 104 represents a pipe of three diameters with lengths h,

h and h; diameters di, 6,2 and d^; and velocities v\, V2 and V3.

The total loss of head, H, assuming formula (19) for friction

loss is

^-^'d^'2^+^'d?^'2^+^'ds^^2^' (S6)

also

^ irdi^ ttA^ Trds^ , ,Q = av =~vx^-^V2 = -^vz, (57)
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substituting the values of vi, V2 and vs obtained from (57) in equa-

tion (56) and transposing the following formula is obtained:

H 16Q2
Ki

I

2gT^ \ 'di
-K2

h
d2^

-Kz
h

dz'
(58)

From this formula with all quantities but one given, the unknown
quantity may be obtained. If the velocity is not known, values

Fig. 104.—Pipe of three diameters.

of Ki, K2 and Kz must be assumed and corrected from a trial

solution. A second solution of the problem may then be made.

PROBLEMS

1. A new cast-iron pipe 1200 ft. long and 6 in. in diameter carries 1.3 cu. ft.

per second. Determine the frictional loss.

2. Determine the discharge of the pipe described in Problem 1 if it dis-

charges under a head of 80 ft.

3. What diameter of new cast-iron pipe, 1 mile long is required to dis-

charge 4.5 cu. ft. per second under a head of 50 ft.?

4. What diameter of concrete pipe 8000 ft. long is required to discharge

40 cu. ft. per second imder a head of 8 ft.?

5. Determine the loss of head due to sudden enlargement if a pipe

carrying 2.0 cu. ft. per second suddenly changes from a diameter of (a) 6 in.

to 8 in., (ft) 6 in. to 12 in., and (cj 6 in. to 18 in. Also determine the difference

in pressure resulting from these changes.

6. Solve Problem 5 if the direction of flow is reversed in each case.

7. A castr-iron pipe 12 in. in diameter and 100 ft. long having a sharp-

cornered entrance draws water from a reservoir and discharges into the air.

What is the difference in elevation between the water surface in the reservoir

and the discharge end of the pipe if the rate of discharge is 16.0 cu. ft. per

second?

8. If the pipe described in Problem 7 connects two reservoirs, both ends

beins sharp-cornered and submerged, other conditions remaining the same,



174 FLOW OF WATER THROUGH PIPES

determine the difference in elevation of the water surfaces in the two reser-

voirs.

9. A wood-stave pipe having a diameter of 48 in. is laid on a down-grade

of 6 ft. per mile. Determine the difference in pressure between two points

1 mile apart if the discharge is 45 cu. ft. per second.

10. A wood-stave pipe, 500 ft. long, is to be designed to carry 60 cu. ft.

per second across a ravine so as to connect the ends of an open flume. If

the difference in elevation between the water surfaces in the two ends of

the flume is to be 5 ft., determine the necessary diameter of pipe, assuming

abrupt changes in section, and neglecting the effect of velocity in the flume.

H. A concrete-pipe culvert 90 ft. long and 3 ft. in diameter is built

through a road embankment. The culvert is laid on a grade of 1 ft, per

100 ft. Water is backed up to a depth of 5 ft. above the top of the pipe

at the entrance and at the outlet the top of the pipe is submerged to a depth

of 2 ft. Assume a sharp-cornered entrance. What is the discharge?

12. In Problem 11 (assuming all other conditions to be the same), what

diameter of pipe will be required to discharge 100 cu. ft. per second?

13. In Problem 11 (assuming all other conditions to be the same) what
will be the depth of water above the top of the pipe at its entrance when
the culvert is discharging 50 cu. ft. per second?

14. A pipe line is to be laid connecting two tangents which intersect at

an angle of 90°. Between two points on these tangents, each distant 100 ft.

from their point of intersection, will the total loss in head be less if a bend
having a radius of 6 ft. or one having a radius of 50 ft. is used?

15. Three new cast-iron pipes are connected in series as shown in Fig. 104.

The first has a diameter of 12 in. and a length of 1200 ft. ; the second has a

diameter of 24 in. and a length of 2000 ft.; and the third has a diameter

of 18 in. and a length of 1500 ft. If the discharge is 8 cu. ft. per second,

determine the lost head neglecting the minor losses.

16. If, in Problem 15, the total lost head in the three pipes is 45 ft.,

neglecting the minor losses, determine the discharge.

17. If the three pipes, described in Problem 15, have lengths of 500 ft.

each, the entrance and all changes in section being sharp-cornered, deter-

mine the total lost head when the discharge is 8 cu. ft. per second.

18. Referring to Fig. 101, page 166, if pipes 1, 2 and 3 have diameters of

24 in., 12 in. and 18 in., and lengths of 1200 ft., 500 ft. and 1000 ft., respect-

ively, determine the discharge through pipe 1, if ^^ = 12 ft. and He = 20 ft.

Neglect minor losses.

19. In Problem 18, determine He, if the discharge through pipe 1 is

20 cu. ft. per second, all other conditions remaining the same.

20. In Problem 18, determine the diameter of pipe 3 if the discharge

through pipe 1 is 24 cu. ft. per second, all other conditions remaining constant.

21. Referring to Fig. 103, page 169, if pipes 1, 2, 3 and 4 have diameters
of 36 in., 18 in., 24 in. and 30 in., and lengths of 3000 ft., 2000 ft., 2400 ft.

and 1500 ft., respectively, determine H, if the discharge through the system
is 60 cu. ft. per second. Neglect the minor losses.

22. In Problem 21, determine the discharge if H is 12 ft., other con-
ditions remaining the same.
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23. In Problem 21, determine the necessary diameter of pipe 3 if ff is

15 ft., other conditions remaining the same.

24. Three smooth rubber-lined fire hose, each 200 ft. long and 2| in.

in diameter and having 1 in. nozzles, are connected to a 6-in. fire hydrant

If, for the nozzles Cc = l and Ct = 0.97, determine the necessary pressure ii

the hydrant in order to throw streams 100 ft. high, the nozzles being 10 ft,

above the hydrant.

26. Determine the height of streams that can be thrown if the pressure

in the hydrant is 70 lbs. per square inch, all other conditions remaining as

stated in Problem 24.



CHAPTER X

FLOW OF WATER IN OPEN CHANNELS

108. Description and Definition.—An open channel is a con-

duit which conveys water without exerting any pressure, above

atmospheric pressure, other than that due to the actual weight of

water carried. Water therefore ordinarily flows in an open channel

with a free water surface, though for an enclosed conduit, like a

sewer flowing full, water may touch the top surface without exert-

ing pressure. In this case it is classed as an open channel. Exam-
ples of open channels are rivers, canals, flumes, and sewers and

aqueducts when carrying water not under pressure.

Open channels have various forms of cross-section. Artificial

channels are conamonly of rectangular, trapezoidal, or circular

cross-section, while natural streams have irregular channels.

Though friction losses in open channels follow the same general

laws as in pipes and pipe formulas could be adapted to them,

special friction formulas for open channels are usually employed.

109. Wetted Perimeter and Hydraulic Radius.—The wetted

perimeter of any conduit is the

line of intersection of its wetted

surface with a cross-sectional plane.

In Fig. 105 the wetted perimeter is

Fig. 105.-Cross-sertion of trape- ^^e length of the broken line abed.
zoidal channel. -. . , i • n .

in a circular conduit flowing part

full, as a sewer, the wetted perimeter is the arc of a circular seg-

ment and in a natural stream. Fig. 116, it is the irregular line

abode.

The hydraulic radius of any section of a channel is its area
divided by the wetted perimeter. All open channel formulas
express the velocity as a function of the hydraulic radius.

110. Friction and Distribution of Velocities.—As described
under pipes (Art. 91) there is friction between the moving water
and the surfaces of any conduit. If there were no other influences

176
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the maximum velocity would ordinarily occur at places most
remote from, the surfaces of the conduit which produce friction,

and consequently at the water surface. Owing to surface tension,

however, there is a resistance to flow at the surface of the water,

and the maximum velocity occurs at some distance below the sur-

face. Under ideal conditions, where there are no disturbing influ-

ences of any kind, the distribution of velocities in a regular channel

will be uniform and similar on either side of the center. There

are always, however, some irregularities in every channel sufficient

to prevent a uniform distribution of velocities. The lines of equal

velocity plotted from a large number of velocity measurements for

the Sudbury conduit near Boston, Fig. 106, shows a more regular

distribution of velocities than will be found in most channels.

The distribution of velocities in a river' of irregular cross-section, as

Fie. 106.—Distribution of velocities in Sudbury conduit.

determined from velocity measurements with a current meter, is

shown in the upper portion of Fig. 107. The figures show the

velocities obtained at the points, where measurements were made
and the irregular lines are interpolated equal velocity lines.

The curves in the lower portion of Fig. 107 show the distribu-

tion of velocities in vertical lines. These curves are called vertical

velocity curves and the velocities from which they are plotted are

called velocities in the vertical. The following properties of ver-

tical velocity curves have been determined from the measurement

of velocities of a large number of streams and a study of the curves

plotted from them.

(a) Vertical velocity curves have approximately the form of

parabolas with horizontal axes passing through the thread of

maximum velocity. In general the maximum velocity occurs

somewhere between the water surface and one-third of the depth,
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the distance from the surface to the point of maximum velocity

being at a greater proportional depth for greater depths of water.

For shallow streams the maximum velocity is very near to the

surface while for very deep streams it may lie at about one-third

10 . 20 30

Distances In teet

40 SO GO 70 80 90 100 UO 120 130 140 ISO

CURVES OF EQUAL VELOCITY

S
a

VERTICAL VELOCITY CURVES

,

Note; Figures at top o£ curves Indicate measutlng points

Figures at bottom of curves Indicate mean velocity In the vertical

20 30 40 60 60 70 80 90 100 110 120 130 140 ISO

Borizontal divisions represent 1 foot per second velocity

Fig. 107.—Velocities in natural stream.

of the depth. A strong wind blowing either upstream or down-
stream will affect the distribution of velocities in the vertical.

(6) The mean velocity in the vertical is ordinarily found at

a distance below the surface varying from 0.55 to 0.65 of the depth.

The velocity at 0.6 depth is usually within 5 per cent of the mean
velocity.
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(c) The mean of the velocities at 0.2 and 0.8 depth usually

gives the mean velocity in the vertical within 2 per cent.

(d) The mean velocity in the vertical is ordinarily from 0.80

to 0.95 of the surface velocity. The smaller percentage applies

to the shallower streams.

The above properties of vertical velocity curves are made
use of in measuring the discharges of streams. Mean velocities

in successive verticals are first obtained by measuring the velocity

at 0.6 of the depth in each vertical or, where greater accuracy is

required, by taking the mean of the velocities at 0.2 and 0.8 of

the depth. The mean of the velocities in any two adjacent ver-

ticals is considered as the mean velocity of the water between these

verticals. The area between the verticals having been determined,

the discharge through this portion of the cross-section of the stream

is the product of this area and the mean velocity. The sum of all

discharges between successive verticals is the total discharge.

The mean velocity in the vertical may be obtained by taking

the mean of several velocity measurements. This method is more

laborious, however, and does not give the mean velocity appreciably

more accurately than that obtained by taking the mean of velocities

at 0.2 and 0.8 of the depth.

The distribution of velocities in an ice-covered stream. Fig. 108,

is modified by the effect of friction between the water and the ice.

The amount of this friction exceeds the skin friction of a free water

surface and the maximum velocity therefore occurs nearer mid-

depth. The mean velocity in the vertical for an ice-covered

stream is not at 0.6 depth but the mean of velocities at 0.2 and 0.8

depth gives approximately the mean velocity the same as for a

stream with a free-water surface.

111. Energy Contained in Water in an Open Channel.—This

subject has been discussed (Art. 72) in connection with the velocity

of approach for weirs, and the energy of water in a pipe is discussed

in Art. 92. In open channels where velocities in different parts of

a cross-section are not the same, the total kinetic energy contained

in the water flowing past any cross-section is

KE=awf^, (1)

W being the total weight of water passing the cross-section in one

second, v the mean velocity, and a an empirical coefiicient depend-
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ing for its value upon the distribution of velocities in the channel

but always greater than unity. The range of variation in a has

not been determined but in channels with unobstructed flow it

probably lies between 1.1 and 1.2. This matter is not of great

importance in ordinary hydraulic problems. Velocity head in

open channels is commonly taken as the head due to the mean

Distanoes In feet
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Fig. 108.—Velocities in ice-covered stream.

velocity, that is, a is assumed to equal unity. The slight error

introduced by this assumption may be partially eluninated by a
proper selection of coefficients.

112. Continuity of Flow in Open Channels.—In any open
channel fed by a constant supply of water there is the same rate of

flow past every cross-section. In pipes flowing full, Art. 93, since

water is practically incompressible, it is not necessary that the
supply be constant in order to have the same rate of flow past
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every cross-section at the same instant; but in open channels

the water is not confined and a variation in the rate of supply will

cause unequal rates of flow past different sections of the channel.

In other words, in order to have continuity of flow in an open

channel it is necessary at the same time to have steady flow, but

in pipes flowing full there is always continuity of flow regardless of

whether the flow is steady or variable.

When continuity of flow exists in an open channel, the mean
velocities are equal at all cross-sections having equal areas but if

the areas are not equal the velocities are inversely proportional to

the areas of the respective cross-sections.

Thus, if ai and vi, and 02 and vz are respectively areas and mean

u "^^
___^^
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The actual conditions of flow as modified by friction for the

case illustrated in Fig. 109 are as follows. The water receives a

certain initial velocity at a, (Art. 85) where the channel leaves the

reservoir. This channel, as indicated in the figure, has a slope

steeper than is required to carry the water with the initial velocity

which it receives at a. The velocity therefore accelerates for some

distance, but a portion of the energy which the water contains is

used in overcoming friction. As the water proceeds down the

channel at a continually increasing velocity, a point is finally

reached (since frictional resistance increases with the velocity, as

has already been shown for pipes and will be shown for open

channels) beyond which the energy used in overcoming friction in

any reach exactly equals the potential energy contained in the

water within the reach by reason of the slope of the channel.

After this point has been reached, approximately at b in the figure,

Fig. 110.—Open channel with constant velocity.

the water will flow to c and beyond with a constant velocity as long

as channel conditions remain unchanged. As water moves from

a to 6 a portion of its potential energy is continually being changed

to kinetic energy and the remainder is used in overcoming friction.

Between b and c the kinetic energy remains constant and all of

the potential energy is used in overcoming friction.

Fig. 110 illustrates the case where the slope is no greater than is

required to carry the water at the initial velocity which it receives

at a. Under these circumstances, as long as the channel conditions

remain constant, the velocity in the channel will be the same at all

sections. In other words the potential energy of the water will all

be used in overcoming friction and the kinetic energy will remain

constant. This case is the one most commonly encountered in

open channel problems.

In this connection it is important to bear in mind that the

velocity remains constant only so long as the channel conditions
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remain constant. Any change in the size of the channel changes the

velocity. An increase or decrease in the slope of the channel

causes a corresponding increase or decrease in velocity. The
velocity is also modified by any conditions affecting frictional

resistance. It will be noted that velocity conditions for open

channels are different than for pipes. In a pipe flowing full, under

a constant head, the water being confined and considered incom-

pressible, the mean velocity can change only when the diameter of

the pipe changes. In an open channel, however, the water being

unconfined, the velocity changes with every change in channel

conditions.

Losses of head in open channels are in every respect analogous

to losses of head in pipes. In addition to the loss of head due to

friction between the moving water and the surface of the channel

there is a loss of head wherever the velocity of water or direction of

flow is changed. The same symbols will be used to represent

losses of head in open channels that are used to designate the cor-

responding losses in pipes (Art. 94) . These losses for open channels

are as follows:

(o) A continuous loss of head throughout the channel due to

friction between the moving water and the surface of the channel

and to viscosity. This loss is commonly referred to as the loss of

head due to friction.

(jb) A loss of head at entrance to the channel, that is, where a

channel takes water from a reservoir or other body of compara-

tively still water.

(c) A loss of head at discharge, that is, where a channel dis-

charges into a reservoir or other body of comparatively still water.

(d) A loss of head due to contraction where a channel changes

to a smaller cross-sectional area causing an increase in velocity.

The loss of head at entrance to a channel (referred to under (6)

above) is a special case of this loss.

(e) A loss of head due to enlargement where a channel changes

to a larger cross-sectional area causing a decrease in velocity.

The loss of head at discharge (referred to under (c) above) is a

special case of this loss.

(/) A loss of head due to obstructions of any kind in a channel,

such as gates, bridge piers or submerged weirs.

(^) A loss of head due to curves in a channel in addition to the

loss which occurs in an equal length of straight channel.
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114. Hydraulic Gradient or Water Surface.—The hydraulic

gradient (Art. 95) of an open channel coincides with the water sur-

face. In the case of steady, uniform flow, the water surface is

parallel to the bottom of the channel. Any changes in channel

conditions which will cause either an increase or decrease in

velocity will cause a change in the elevation of the water surface

the same as a change in velocity in a pipe will cause a change in

the hydraulic gradient. Changes in the hydraulic gradient

of a pipe hne resulting from changes in section are frequently

of minor importance and need be considered only insofar as

they affect the total loss of head, while for an open channel the

effect of any changes in the cross-section should be thoroughly

understood and designs for the transition of the water from one

velocity to another, should be worked out with great care.

Fig. 111.

Failure to provide properly for changes in elevation of water sur-

face at the place where such changes occur may make it necessary

for the channel to carry water at a depth other than that for

which it was designed and thus interfere with its satisfactory

operation.

115. Loss of Head Due to Friction in Open Channels.—Fig.

Ill represents the condition of steady, uniform flow in a straight

channel. Since all of the head, hf, is used in overcoming friction in

the distance, I, this lost head is a measure of the resistance to

flow. The ratio hf/l is called the slope, and is represented by the
symbol s. Since friction losses in open channels and pipes are

of the same character they are governed by the same laws. To
make the general laws as stated for pipes on page 145 apply to open
channels it is necessary only to substitute, respectively, the words
channel and hydraulic radius for pipe and diameter. It is evident,

therefore, that the base formulas for pipes apply equally to open
channels. Formula (14), page 146, is in the form generally used
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for open channels. For convenience of reference it is here

repeated.

v = K"'r''^ (2)

The further consideration of friction losses in open channels

must be purely empirical. Numerical values of empirical coef-

ficients and exponents and, if necessary, modifications in the

form of the base formula must be derived from experimental data.

A few of the more commonly used open channel formulas are

given in the following pages.

116. The Chezy Formvila.—This formula as stated in the pre-

ceding chapter (Art. 97) is, with proper modification, applicable

either to open channels or to pipes, though it was originally

designed for open channels. The formula as written by Chezy is

v = CV7s, (3)

in which v is the mean velocity, 7- is the hydrauhc radius, and s is

the slope of water surface. The Chezy formula is of the same form

as formula (2) ; y and z each being equal to I and C being written

for K'". The value of the coefficient C varies with the character-

istics of the channel. In the form given it is not therefore readily

adaptable to open channels but with modifications it forms the

basis of most of the formulas in common use.

117. The Kutter Formula.—An elaborate investigation of all

available records of measurements of flow in open channels was

made by GanguiUet and Kutter,^ Swiss engineers, in 1869. As a

result of their study they deduced the following empirical formula,

commonly called the Kutter formula, for determining the value of

C in the Chezy formula.

41.65+0.^0281^^811

... (4)

l+_^(41.65+0:«^)'

In the above formula, C is expressed as a function of the hydrauhc

radius, r, and slope, s, as well as the coefficient of roughness, n, whose

value increases with the degree of roughness of the channel.

1 Ganguillet and Kutter: Flow of Water in Rivers and Other Channels.

Translation by Herring and Tratjtwine, John Wiley & Sons, Publishers.
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Values of C prom Kutter's Formula
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Some of the values of n as published by the authors of the formula

are as follows:

n= 0.010 for well-planed timber or neat cement;

n = 0.012 for common boards;

n= 0.013 for ashlar or neatly joined brickwork;

n= 0.017 for rubble masonry;

n= 0.020 for canals in firm gravel;

n= 0.025 for canals and rivers in good condition;

/i = 0.030 for canals and rivers with stones and weeds;

n = 0.035 for canals and rivers in bad order.

The above values do not include all present construction mate-

rials, and later experimental data have shown the need of revising

HoBTONS Values op the Coefficient op Roughness, n, fob Kutter's

AND Manning's Formulas

Surface

Vitrified sewer pipe

Common clay drain tile

Glazed brickwork

Brick in cement mortar

Neat-cement surfaces

Cement-mortar surfaces

Concrete pipe

Plank flumes, planed

Plank flumes, unplaned

Plank flumes with battens

Concrete-lined channels

Rubble masonry

Dry rubble

Ashlar masonry

Smooth metal flumes

Corrugated metal flumes

Earth canals in good condition

Earth canals with weeds and rocks. . . .

Canals excavated in rock

Natural streams in good condition

Natural streams with weeds and rocks

.

Sluggish rivers, very weedy

Range op Values

From

0.010

0.011

0.011

0,012

0.010

0.011

0.012

0.010

0.011

0.012

0.012

0.017

0.025

0.013

0.011

0.022

0.017

0.025

0.025

0.025

0.035

0.050

To

0.017

0.017

0.015

0.017

0.013

0.016

0.016

0.014

0.015

0.016

0.018

0.030

0.035

0.017

0.015

0.030

0.025

0.040

0.035

0.033

0.060

0.150

Commonly
used

values

0.013

0.014

0.013

0.015

0.015

0.015

0.012

0.013

0.015

0.015

0.0225

0.035

0.033
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them. A more complete list of values of "Kutter's n,"

based upon later data and practice, and showing the probable

ranges of variation has been prepared by Horton, extracts from

which are tabulated on page 187.

The solution of the Kutter formula may be obtained from

tables which usually accompany the formula. The use of the

Chezy formula with the Kutter coefficient thus becomes much
simplified. A short table of values of C corresponding to different

values of r, s, and n is given on page 186. Interpolations are

necessary in using this table.

118. The Mamiing Formula.—This formula was first suggested

by Manning ^ in 1890. His study of the experimental data then

available led to the conclusion that the values of the exponents

y and z (formula (2)) which best represented the law of flow in

open channels were, respectively f and |. Expressed in English

units the Manning formula is

1-486 ,, ^ ,^,

This may be considered as the Chezy formula with

n

The coefficient of roughness, n, is to be given the same value as n
in the Kutter formula. The values of n apphcable to different

channel conditions are tabulated on page 187. Expressed in metric

units the Manning formula is

v = -r'^sVi f5)n ^ '

119. Comparison of Manning and Kutter Formulas.—Using
the same value of n in each case, the Kutter and Manning formulas
give identical results for r=l meter = 3.28 feet. This may be
proved by substituting 3.28 for r in each formula. It will be found
that each formula then reduces to

^^L8_ll
n

'Robert Manning: Flow of Water in Open Channels and Pipes. Trans.
Inst. Civ. Eng. of Ireland, 1890, vol. 20.
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Since s does not appear in this equation, it follows that when t

equals 1 meter, the Kutter formula gives the same value of C
for all slopes.

Further investigation shows that for hydrauhc radii less than

1 meter, with the same value of n used in each formula, the Kutter

formula gives somewhat higher values of C than the Manning
formula. For hydrauhc radii greater than 1 meter the values of C
obtained by the Kutter formula are in some cases slightly less and

in others slightly greater than the values obtained by the Manning
formula.

It has been found, however, from several hundred gagings of

open channels which were made under a wide range of conditions

as regards shape, size and variation in roughness that the proper

values of n to be used in the two formulas are so nearly identical

that for all practical purposes the same values may be used. In

other words, with the same value of n, problems solved by means

of one of the formulas will give results agreeing very closely with

those obtained by using the other formula.

The Kutter formula has for many years been the most widely

used of all of the open-channel formulas. It has been used almost

exclusively in the United States and England and more commonly
than any other formula in other parts of the world. The Manning
formula has been used for a number of years, in Egypt, India, and

AustraUa and quite recently many American engineers have come

to see its advantages over the more cumbersome Kutter formula.

It is because of the established use of the Kutter formula and

the general familiarity of engineers with the type of channel

represented by different values of " Kutter 's n" that there

is an advantage in including n in the Manning coefficient.

Expressed as it is, engineers familiar with the Kutter formula may
adopt the Manning formula without the necessity of familiarizing

themselves with a new coefficient, and at the same time get prac-

tically the same results as with the formula with which they are

familiar.

Very evidently the Manning formula could be written

v = Kr^s^ (7)

and values of K could be selected for different types of channels

the same as values of n are now selected. It is to be hoped that

this form of the formula will eventually come into general use, and
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that the present form will be simply a step in the transition from

the use of the Kutter formula to the use of the simplified form of the

Manning formula. In order to assist in determining K in terms of

n the following table of values is given

:

Manning's K in Terms op n. K 1.486

n

n
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slopes. In the latter case the Manning formula appears to give

more accurate results than the Kutter formula.

120. The Bazin Formula.—This formula, first published ^ in

1897, like the Kutter formula, determines the value of C in the

Chezy formula. It considers C to be a function of r but not of s.

Expressed in English units the formula is

C =i^, (8)

vr

in which m is a coefficient of roughness. Values of m given by
Bazin are

m = 0.109 for smooth cement or planed wood;

m = 0.290 for planks, ashlar and brick;

m= 0.833 for rubble masonry;

m= 1.540 for earth channels of very regular surface;

m = 2.360 for ordinary earth channel;

m= 3.170 for exceptionally rough channels.

The Bazin formula is used extensively in France but it has not

been generally adopted in other countries. The value of m is

subject to fully as wide a variation as n in the Kutter or Manning
formulas.

121. Open-channel Formulas in General. — The Kutter,

Manning, and Bazin formulas are the best known and most widely

used of the open-channel formulas. There are a large number of

other formulas which have been published, and many of these

doubtless possess merit. It is not ordinarily advisable, however, to

use any except the commonly accepted formulas unless there is

very good reason for so doing. The successful use of any open-

channel formula requires an accurate knowledge of conditions, and

judgment in the selection of coefficients. Even the most expe-

rienced engineers may expect errors of at least 10 per cent in select-

ing coefficients with corresponding errors in their results.

122. Detailed Study of Hydraulic Gradient or Water Surface.

—In the investigation of minor losses in pipes, Art. 102, it has been

shown that these losses may be added collectively to the loss of

head due to friction and that this sum, which represents the total

' Annales des Fonts et Chauss^es, 1897.
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lost head, may be considered as a unit. The losses of head for

open channels are similar to those for pipes with the exception

that they must be provided for at the places where they occur.

Losses of head in open channels which result from changes in

velocity may be expressed as functions of the velocity head the

same as for pipes. Thus,

w^ V^ f^

in which v is the mean velocity in the channel having the smaller

cross-sectional area. While these losses of head for open channels

are frequently of much greater importance than the similar losses for

pipes, the values of coefficients for determining them are not so

well established. More experimental data in this field are needed.

"i ^

;^\\^s'\^^\\^^'»s^^^\s^^^vvv^\svvV^\Vv^'^'^^^^^

Fig. 112.—Change of channel to smaller section.

Fig. 112 shows the change in water surface resulting from con-

tracting the cross-sectional area of a channel. The mean velocity in

the larger channel is vi and in the smaller channel v. It is assumed

that the grades of the two channels are just sufficient to maintain

these velocities; that is, there is uniform flow in each channel.

Kinetic energy is always obtained at the expense of potential

energy. In any open channel the drop in water surface, h in Fig. 112,

occurring at any change in section measures the loss in potential

energy resulting from the change. A portion of h, h„ in figure, is

used in producing kinetic energy, that is in increasing the velocity

of the water. The remainder, he, is the head used in overcoming

friction losses at the place where the change in velocity occurs.

Referring to the figure.
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in which v and V\ are the mean velocities in the smaller and larger

channels respectively. This expression is also obtained by writing

Bernoulli's equation between points in a filament on either side of

the change in section when equal velocities at all points in a

cross-section are assumed for each channel.

From the figure

/, = /i,+/,„=/,„+^_g, (10)

and in a manner similar to that employed for losses due to contrac-

tion in pipes

^^ =^4g (11)

and substituting this value in equation (10)

--•l+l-g (-)

There are no experimental data from which Kc for open channels

can be determined but it appears reasonable that it may have a

value corresponding to that for contractions in pipes. The max-
imum value for a sharp-cornered entrance may thus be taken as

0.5 with a smaller value for a rounded or tapered entrance. With
care in design the value of Kc may be reduced very nearly to zero.

Under the most favorable conditions where Kc is zero, the differ-

ence in elevation of water surfaces will be h,. This drop in water

surface should always be provided for when a canal changes to

a smaller section.

Example.—^Assume entrance conditions, such that Kc= 0.25;

the velocity in the upper channel, 2;i = 2.0 ft. per second; in the

lower channel v = 8.0 ft. per second. Determine the drop in water

surface. From equation (12)

'^ =«-2SX6-0-2+60-2-602 = ll«^*-

If a canal discharges from a reservoir or other body of com-

paratively still water the conditions are the same as above except

that vi may be considered zero. In the above problem vi could

have been considered zero without materially affecting the result.

Fig. 113 shows the change in water surface resulting from enlarg-

ing the cross-sectional area of a channel. The mean velocity in the
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smaller channel is v and in the larger channel vi. It is assumed

that the slopes of the two channels are just sufficient to maintain

these velocities.

The velocity v being greater than Vi there is a loss in kinetic

energy with a resultant gain in potential energy. If there were no

loss of energy from friction, all of the kinetic energy in the smaller

channel in excess of the kinetic energy in the larger channel would

be converted into potential energy, and the water surface in the

larger channel would be at a distance h, above the water surface

in the smaller channel. Since some energy is required to overcome

friction and turbulence losses where the transition in velocities

occurs, the actual elevation of water surface in the larger channel

is lower than it would be if there were no friction losses, or, as

indicated in the figure, at a distance, h, above the water surface

in the smaller channel. The vertical distance he= h,—h thus rep-

iA„l/ic_^_„

vSVS'.V^S^^^ASVN'^^'^^V'^W'.V

\̂^':^^^^^v^^^^A^':^T^^^v:^^^v^^^^^^v;^^^^^^':^^T^t^^\5^

Fig. 113.—Change of channel to larger section.

resents the loss of head due to enlargement. This may be expressed

algebraically as follows

:

^'=W^' ('')

also

K=K-'k,= '^-'^^-K .... (14)

and substituting K, — for h^ the formula may be written,

H---i-t (-)

There are no satisfactory experimental data giving values of K^.
In general, however, it is known that for abrupt changes in velocity,
very little of the kinetic energy in the smaller channel is con-
verted into potential energy. In other words nearly all of this
energy is lost in friction and turbulence and there is little differ-
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ence in elevation in the water surfaces in the two channels. In

this case Ke approaches very near to unity. By exercising care

in design and construction and making velocity changes gradual

so as to produce a minimum of turbulence the value of Ke may be

greatly reduced.

It should be remembered that equations (9) to (15) are approx-

imations in that they assume the kinetic energy in each channel to

be that due to the mean velocity, that is, they assume equal

velocities at all points in a cross-section for each channel. This

is equivalent to assuming a in equation (1) to be equal to unity.

The error introduced, thereby is however, of no great importance,

especially in view of the fact that a correction for this error is

necessarily included in the empirical values selected for Kc or Ke.

The most common types of obstructions in open channels are

submerged weirs, gates, and bridge piers. Losses of head resulting

from weirs of all kinds and gates, which are types of orifices, are

treated in earlier chapters. These structures are commonly
employed to deflect water from main canals to secondary channels.

Bridge piers. Fig. 114, restrict the cross-sectional area of a chan-

nel and therefore obstruct the flow. The loss of head, h„, or what

amounts to the same thing, the amount that the water will be

backed up by piers is not

sufficient to be of any im-

portance except for com-

paratively high velocities.

The most important case

arises in determining the

backing-up effect of bridge

piers during flood stages of

streams. The total loss of

head is made up of three parts; a loss of head due to contraction

of the channel at the upstream end of the piers, a loss of head

due to enlargement of the channel at the downstream end, and

an increase in loss of head due to friction resulting from the

increase in velocity in the contracted portion of the channel.

On account of the higher velocity, the surface of the water

between the piers is depressed, the vertical distance, h, measuring

the increase in velocity head plus the loss of head. The distance

h—hg is a measure of the velocity head reconverted into static

head.

Fig. 114.—Bridge pier obstructing flow.
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The quantitative determination of losses of head from piers is

entirely empirical. Though many experimental data are available,

no satisfactory general formula for the solution of this problem is

known. In general, however, piers that are so designed as to allow

the changes in velocity to occur gradually with a minimum amount

of turbulence, cause the smallest loss

of head. Fig. 115 represents two

horizontal sections of piers. Sec-

tion A will cause less turbulence and

consequently less loss of head than

section B.

Curves or bends in the alignment of

a channel cause a loss of head. For

low velocities such as occur in earth

canals the loss in head is slight and

ordinarily no allowance is made for it

unless the curves are sharp and fre-

quent. For sharp curves in concrete-

lined canals or flumes designed to

carry water at high velocities, an

increase in the slope should be pro-

vided. There are few experiments for

determining the loss of head in curves, but the data for bends in

pipes (page 163) may be used as a guide. Some engineers prefer

to correct for loss of head at curves by using a higher coefficient of

roughness.

123. Hydraulics of Rivers.—Open-channel formulas do not

apply accurately to natural streams since the channel sections and

slope of water surface vary and the flow is non-uniform. At the

lower stages, streams usually contain alternating reaches of riffles

and slack water. During high stages this condition largely dis-

appears and the water surface becomes approximately parallel to

the average slope of the bottom of the channel. The degree of

roughness of natural streams varies greatly within short reaches

and even within different parts of the same cross-section. This

may be seen from Fig. 116, which illustrates a stream in flood stage.

The channel of normal flow, abc, will probably have an entirely

different coefficient of roughness than the flood plain cde. Also the

portion of the left-hand bank, Fig. 116, lying above ordinary

high water may be covered with trees or other vegetation and have a

Fig. 115.—^Effect of shape of

bridge piers in causing tur-

bulence.
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higher coefficient than the lower portion. Rocks and other channel

irregularities are frequent and cause varying conditions of turbu-

lence, the effect of which on the coefficient of roughness is difficult

to estimate.

There are, however, times when the engineer must estimate as

well as he can, the carrying capacity of a natural channel. This

is done by making a survey of the stream, from which cross-sections

may be plotted and the slope of water surface may be determined.

A certain reach is selected for which are obtained an average cross-

section and slope of water surface, the computations being based

upon these average values.

It is apparent that results obtained in this manner will be very

approximate, and that the degree of accuracy obtained will depend

largely upon the ability of the engineer to judge the effect of these

varying conditions upon the

coefficient of roughness. Bet-

ter results will be obtained

for natural streams that

have fairly straight and uni- %77Z^;7^!7^

form channels and are free Fig. 116.—Natural stream in flood stage,

from conditions causing tur-

bulence. At the higher stages channel irregularities have less

effect upon the slope of water surface, and open-channel formulas

then apply more accurately.

124. Irregular Sections.—Open-channel formulas should not

be applied directly to sections having a break or pronounced

irregularity in the wetted perimeter. Fig. 116, which illustrates

a stream in flood stage shows a break in the wetted perimeter

at c. That the open-channel formulas do not apply directly to

the entire cross-section in such a case may be shown by the

following example. The Manning formula is used, though any

of the other open-channel formulas will show substantially the

same results. Assume s = 0.001; n = 0.035; the length of the

portion, abc, of the wetted perimeter= 200 ft., and of the portion

cde = 300 ft. ; the area of the portion, dbcm of the cross-section =

3000 sq. ft. and of the portion mcde = 900 sq. ft. Then for the

entire cross-section, a = 3900, p = 500, ^ = ^ = "500^^'^' ^"^^ ^^

the Manning formula, Q = 20,600 cu. ft. per second. The cross-

section may now be divided into the two portions, ahem and
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mcde. Assuming the depth of water over the flood plain to be

3 ft., the wetted perimeter of the portion of the cross-section,

a&cm will be about 203 ft. Then r = - = -7^7^ = 14 . 78 and from
p 203

the Manning formula, Q = 24,250 cu. ft. per second. This indi-

cates that a portion of the channel discharges more water than

all of it, which is clearly impossible.

Where an open-channel formula must be applied to an irregular

section such as that indicated in Fig. 116, it is necessary to divide

the cross-section into two portions and compute the discharges

for each portion separately. As the two portions of the channel

will differ in roughness, different coefficients should be selected for

each.

125. Cross-section of Greatest Efficiency.—The most efficient

channel cross-section, from a hydraulic standpoint, is the one

which, with a given slope and area, will have the maximum
capacity. This cross-section is the one having the smallest wetted

perimeter, since frictional resistance increases directly with 'the

wetted perimeter. This also may be seen from an examination

of one of the open-channel formulas. Take for example the

equation for Q as given by the Manning formula

Q =av=^^^ ar^s^i (16)

Under the assumptions made a, n, and s are constant. Q there-

fore increases with r. Since r=—, r increases as p decreases and
P

since Q varies only with r it is a maximum when p is a minimum.
It should be borne in mind in this connection that there are

usually practical objections to using cross-

^^^^ sections of minimum area but the dimen-

y sions of such cross-sections should be known
y and adhered to as closely as conditions

^^ appear to justify.

Fig. I17.-Semicircular ^^ ^'^ cross-sections, having a given area

channel. the semicircle. Fig. 117, has the smallest

wetted perimeter and it is therefore the

cross-section of highest hydraulic efficiency. Semicircular cross-

sections are sometimes used for concrete or brick channels but
they are not used for earth channels.
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Trapezoidal cross-sections, Fig. 118, are used more commonly
than any others. They are the only practical sections for earth

canals, and masonry and wooden conduits are usually of this form.

The rectangular section, usually used for wooden flumes, may be

considered as a special case of the trapezoidal section. Properties

of trapezoidal sections and methods of determining sections of

greatest efficiency are shown in the following analysis.

e b
FromFig. 118, yr = 3 and yr = 2/; or e = D2; and 6 = 1)2/. Then

and

or

(a)

p={y+2Vi+z^)D, (17)

a=D^{z+y), (18)

yz+y (19)

Fig. 118.—Trapezoidal channels.

Substituting this value of D in equation (17),

p={y+2Vl+?)^^ (20)

Equating the first derivative with respect to y to zero and reducing,

y = 2{Vl+?-z), (21)

or

b = 2D(Vl+z^-z) (22)

From which may be obtained the relation between depth of

water and bottom width of canal of the most efficient cross-

section for any values of z.

From equations (17) and (18),

«^,^ D'i^-ty±_
(23)

P D(y+2Vl+z^)
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Substituting y from equation (21) and reducing

r = D/2, (24)

or, the cross-section of greatest efl^ciency has a hydraulic radius

equal to one-half the depth of water.

By substituting y from equation (21) in equation (20) and

reducing, the following expression is obtained

p =2v^V2V'i+^-0 (25)

equating the first derivative with respect to z to zero and reducing

2=4= = tan 30°.

It may be seen from an examination of equation (22) that

when s= tan 30° the length of each side is equal to 6, Fig. 118 (c)

and the section becomes a half hexagon. Thus, of all the trape-

zoidal sections (including the rectangle), for a given area, the half

hexagon has the smallest perimeter and it is therefore the most

efficient trapezoidal cross-section.

From equation (22) are obtained the following relations between

bottom width and depth (for different side slopes) for trapezoidal

cross-sections of maximum eflBciency.

e/D = z i J 1 li 2 3 4

h 2D 1.56D 1.24Z) 0.83D 0.61D 0.47D 0.32D 0.25D

A semicircle having its center in the middle of the water surface

may always be inscribed within a cross-section of maximum
efficiency. This is illustrated for a

EV=^==^^-,l-p-,=^^^gi^><f trapezoidal cross-section in Fig. 119.

\, X I

^s^ i/ OA, OB, and OC are drawn from a

XX^
I y^ point on the center line of the

f" b g water surface perpendicular to the

FiQ 119
sides of the channel EF, FG, and
GH respectively. Let EF = GH=x;

FG=b; OA = OC=R; and OS = D. As before a

=

area of section

and p = wetted perimeter. Then from the figure

a =xR+^bD
and

p = 2x+b.
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And since (equation (24)) the hydraulic radius equals one-half the

depth of water

From which

a ^xR+^bD_D
V~ 2x-\-h ~2'

R=D.

That is, OA, OB, and OC are all equal and a semicircle with

center at is tangent to the three sides.

126. Circular Sections.—The maximum discharge from a

channel of circular cross-section occurs at a little less than full

depth. This may be seen from an examination of open-channel

formulas. The discharge by the Manning formula is

r^ 1-486 ,, ,

(16)

a being the cross-sectional area. In the

investigation of a particular channel n and

s will be constant. From Fig. 120, R being

the radius of the circle,

360-9^„ p

and

a = -

360

360-e
360

XvR^+hR^ sin e. Fig. 120—Circular
channel.

With these equations an expression for ar^^ may be written, dif-

ferentiating which and equating to zero, the value of 6 which

makes Q a maximum is found to be 57° 40'. The corresponding

depth of water is D = 0.9Z8d. Other open-channel formulas will

give substantially the same result. This means that a pipe carry-

ing water not under pressure, when free from obstructions and

laid on a true grade, will not flow full.

127. Non-uniform Flow.— In uniform flow the velocity past

all cross-sections in the channel is constant. This condition obtains

in ordinary conduits where successive cross-sections are uniform

in size and shape and the slope of water surface is parallel to the

bed of the channel. There are, however, certain cases where the

velocities are being accelerated or retarded, that is, the flow is

non-uniform, although the same quantity of water passes all
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cross-sections so that continuity of flow exists, or expressed by-

symbols,

Q = aiVi=a2V2 = a3V3, etc.

An example of non-uniform flow is illustrated in Fig. 121, which rep-

resents a canal suppHed by another canal or reservoir. Water

enters the canal at a certain initial velocity which may be computed

by the method described in Art. 85. There is a sudden drop in the

water surface at the entrance. The slope of the canal is greater

than that required to carry the water at its initial velocity and

the velocity therefore continues to accelerate until it becomes equal

to the velocity at which the channel will carry water under condi-

tions of uniform flow.

Fig. 122 which represents a canal connecting two reservoirs is

Fig. 121.—Non-uniform flow in channel with steep slope.

another example of non-uniform flow. The bottom of the canal

is on a slope different from that which the water surface will

attain. The total head producing flow is H. As before, there is a

drop in the water surface at the place where the water receives its

initial velocity. The same analysis applies to the two cases illus-

trated in Figs. 121 and 122.

This problem may best be analyzed by considering the channel

to be divided up into reaches A, B, C, etc.. Figs. 121 and 122, the

computations being made for one reach at a time. There is a

certain degree of approximation introduced in doing this as com-

putations arc based upon an average cross-sectional area, but by
reducing the length of reach considered any desired degree of

accuracy may be obtained. The following nomenclature is

used:
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Z= length of reach considered;

si = slope of bottom of canal;

s= average slope of water surface in reach;

^1 = fall of water surface in reach;

hf=loss of lead due to friction in reach;

do= depth of water in upper end of reach;

di = depth of water in lower end of reach;

60= bottom width of trapezoidal section at upper end of reach;

61 = bottom width of trapezoidal section at lower end of reach;

j>o= mean velocity at upper end of reach;

«'i=mean velocity at lower end of reach;

i' =mean velocity at middle of reach;

r= hydraulic radius of section at middle of reach;

3= slope of sides of canal"for trapezoidal section;

n= coefficient of roughness in Manning's formula.

Fig. 122.—Non-uniform flow in channel with flat slope.

From Bernoulli's equation, assuming equal velocities at all points

in a cross-section.

From Manning's formula,

1.486
v= - r^s^^- =h^r^.(^Y, . . . (27)

n

and approximately, putting v= \{vo-\-v{),

_ ln^{vo+vi)^
^' 8.83rH ^^^^

Substituting this value of h/ in equation (26) and transposing,

vi^ vo^ hf(po+v{f ,^Q.

^'=Yg~2-g-^ 8.83rH
^^9)

This is the general equation for non-uniform flow.



204 FLOW OF WATER IN OPEN CHANNELS

If the areas and wetted perimeters of the cross-sections at the

upper and lower ends of a reach and also the drop in water surface,

hi, are measured, the velocity at one end of the reach may be

expressed in terms of the velocity at the other end, as, for example,

2,0 = ^i^, and the other velocity, vi, may be computed from

equation (29).

Similarly if Q and the cross-section at the upper end of a reach

are known, the cross-section at the lower end of a reach may

be computed. Assume for example a trapezoidal cross-section.

Then
hi = do+sil-di (30)

"°=Mbo+zdoy
^^^^

''=diih+zdiy
(^2^

and for the average section,

= Mbo+zdo) +di (bi +zdi)

bo+h+2{d^+di)Vi+?

In the right-hand members of the above equations 6i and di are

the only unknown quantities, and one of these must be assumed.

The known quantities and the assumed value of 6i or di are then

substituted in these equations and the expressions for hi, vq, vi,

and r thus obtained are substituted in equation (29) which equation

may be solved for fei or di depending upon which has been assumed.

Suppose for example that di, the depth of water at the lower end

of the reach, has been assumed; bi is then computed. If the pro-

portions of canal section thus obtained are not satisfactory, a new

value of di may be assumed and bi may be recomputed. Ordina-

rily the general form of the canal will be well enough known so

that recomputations will be unnecessary.

To get the dimensions of other cross-sections the above process

will be repeated, the section at the lower end of one reach becoming

the upper cross-section of the next reach below.

128. Backwater.—A common problem in non-uniform flow

occurs where water is backed up by a dam, weir or other obstruc-

tion. Usually it is required to determine the amount that the
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water surface will be raised at certain specified distances upstream

from the obstruction. Fig. 123 indicates a channel whose water

surface without the obstruction would be the line mn; with the

obstruction the water surface assumes the curved Hne ahcde. This

latter line is called the backwater curve. It is required to determine

the position of sufficient points on the backwater curve so that it

may be plotted.

In this case the velocity is retarded but the general principles

are the same as for non-uniform flow with accelerating velocity,

and the same general method of solution may be followed. The
channel is divided up into reaches A, B, C, etc., as before, but

as the elevation of water surface at the obstruction is usually given

the computations are begun at this section and continued upstream.

Fig. 123.—Backwater.

This is not necessary, however, as the computations may be

begun at any section with a known elevation of water surface and

be carried either upstream or downstream. The nomenclature is

that given on page 203.

The general equation for non-uniform flow as given on page 203

is

hi =
2g 2g'^ 8.83r-^ '

(29)

do, the depth of water at the upper end of the reach is the quantity

sought. With this determined the depth at the upper end of the

next reach may be obtained in the same manner. This problem

may be solved by equation (29) in a manner practically identical

with that described in Art. 126, the only difference being that the

computations proceed upstream instead of downstream.

One of the commonest applications of the backwater curve
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problem is to the determination of the elevations of points in the

backwater curve above a dam. This is necessary when the damage

which wiU result from submerging property during floods or the

effect of backwater on some power plant farther upstream, is to be

determined. Since in natural streams the channels are irregular,

average sections in each reach and also average velocities are used.

It is usual, therefore, to put the average velocity in the reach, v,

in formula (29) in the place of vq and vi, from which the follow-

ing simplified expression is obtained

:

'^1 =2^. (34)

This is simply a transposed form of the Manning formula, hi in

this case being equal to h/.

In solving backwater problems by this formula, Q and the

elevation of water surface at the lower end of reach A are usually

known. Then hi is assumed, from which a trial value of elevation

of water surface in the middle of the reach may be obtained. Based

upon this assumed elevation an average channel cross-section for the

reach may be plotted and the area and hydraulic radius determined.

Then hi may be computed and if this computed value of hi differs

from the assumed value sufficiently to materially affect the results

of the computations, a new assumption for hi may be made and the

computations repeated until the assumed value of hi is as near as

is desired to the assumed value. With a little experience it will be

found that the first assumed value of hi will give the computed

value close enough without repeating the computations.

As considerable uncertainty exists in the selection of a proper

value of n and since the error thus introduced into the result is

raised to the second power any solution of this problem is neces-

sarily approximate.

129. Divided Flow.—^Fig. 124 represents a channel divided by
an island. The total discharge, Q, is given and it is required to

determine Qi and Q2, the portion of discharge going respectively to

channels 1 and 2, and also the total lost head h\, that is, the drop

in water surface from m to n. From the Manning formula

'^7^2:21^^' (3^)
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and since v = -, using subscripts 1 and 2 to refer to the respective

channels,

and
h 2.21ri^'^'

h 2.21r2*^'

(36)

. . (37)

Fig. 124.—Channel divided by island.

Equating values of h.\ and reducing

Q,=Q,!!?^; § (38)

Putting

^^rwi^ § (39)

Qi=FQ2, (40)

and since

Q = Qi+Q2, (41)

Q2 =j^, (42)

hi may now be obtained by substituting Qi and Qa in formulas (36)

and (37).

In computing backwater curves where the channel is divided

by an island of considerable length it may be necessary to make

computations for separate reaches, as described on page 205. In

this case, Qi and Q2 may be determined approximately from

formulas (40) and (42) using an average cross-section for each

channel and with these discharges determined the slope, or rise in

water surface, hi, may be computed. If the values Qi and Q2

are correct, the computations should show hi the same for each
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channel. If the computed values of hi do not agree, the com-

putations should be repeated, reducing the discharge of the channel

for which the computations give the greatest value of hi and increas-

ing the discharge of the other channel by an equal amount. The

computations are repeated until they give approximately the same

values of hi for both channels.

It may be helpful, in order to reduce the number of trial

solutions, to plot values of Q against the error made in each assump-

tion. The method is similar to that for divided flow in pipes,

described on page 167.

The problem presented by channels having a flood plain,

Fig. 116 is similar to that of the channel divided by an island.

The flow over the plain should be computed separately from that

for the main channel, as discussed on page 207. If the total dis-

charge is known, Qi and Q2 being respectively the portions of

the flow for the main channel and flood plain, formulas (40) and

(42) may be used to determine approximate values of Qi and Q2.

With these approximate discharges determined, the two values of

hi may be computed, using the proper value of n for each channel.

If these values of hi do not agree the computations should be

repeated, correcting Qi and Q2 and continuing the computations in

the same manner as that described above for channels divided by
an island.

PROBLEMS

1. An earth canal in good condition having a bottom width of 12 ft.

and side slopes of 2 horizontal to 1 vertical is designed to carry 180 cu. ft.

per second at a mean velocity of 2.25 ft. per second. What is the necessary

grade of the canal?

2. What is the capacity of the canal in Problem 1, if the grade is 2 ft.

per mile, all other conditions remaining the same?

3. Determine the depth of water in the canal, described in Problem 1,

if the grade is 2 ft. per mile, other conditions remaining as stated.

4. Determine the bottom width of the canal having the same capacity

and side slopeo as the canal described in Problem 1, that will give the most
efficient section.

5. A circular concrete sewer 5 ft. in diameter and flowing half full has a
grade of 4 ft. per mile. Determine the discharge.

6. In Problem 5, what slope in feet per mile must the sewer have if the

mean velocity is to be 8 ft. per second when flowing full capacity?

7. A smooth-metal flume of semicircular cross-section, has a diameter of

6 ft. and a grade of 0.005. What diameter of corrugated metal flume will

be required to have the same capacity.
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8. An earth canal carries a depth of water of 6 ft. The canal is 20 ft.

wide on the bottom and has side slopes of 1.5 horizontal to 1 vertical. s =
0.0002. Using a value of n of 0.025 compute the discharge by the Manning
formula and with this discharge determine the value of n in the Kutter

formula and also the value of m in the Bazin formula.

9. An earth canal is to be designed to carry 400 cu. ft. per second at a

mean velocity of 2.2 ft. per second. The sides of canal have a slope of

2 horizontal to 1 vertical. The depth of water is to be one-fourth of the bot-

tom width. Assuming that the canal will be maintained in good condition

find the necessary grade.

10. An earth canal in good condition carries 200 cu. ft. per second at a

velocity of 2 ft. per second. Side slopes of canal are 2 horizontal to 1 vertical.

The depth of water is one-third of bottom width of canal. This canal

discharges into a flume with a tapered entrance, the conditions being such

that the loss of head at entrance may be considered to be one-half of what

it would be for an abrupt change in section. The flume is 7 ft. wide and

has vertical sides. The slope of the bottom of the flume is such that it

carries a depth of water of 3.5 ft. Determine how much the bottom of the

flume should be above or below the bottom of the canal.

11. An earth canal containing weeds and grass has a bottom width of

15 ft. and side slopes of 2 horizontal to 1 vertical. The depth of water is

4 ft. and the slope is 2.75 ft. per mile. It is desired to change the section

to a semicircular concrete-lined channel having a slope of 1.5 ft. in 1000 ft.

Determine the radius of the semicircular channel if it flows full. If the

change in section is abrupt and sharp-cornered, what will be the drop in

water surface where the change in section occurs?

12. An earth canal in good condition has a bottom width of 10 ft., side

slopes of 1.75 horizontal to 1 vertical, a grade of 0.00025, and carries 140 cu. ft.

per second. A gate is constructed at the lower end of the canal which dis-

charges freely into the air. The coefficient of discharge of the gate is 0.83.

The gate is to be 3.0 ft. high. How wide should the gate be to maintain a

constant depth of water in the canal?

13. A rectangular flume of unplaned timber connects two reservoirs

300 ft. apart. The flume is 16 ft. wide and both entrance and exit are sharp-

cornered. The bottom of the flume, which is on a level grade, is 5 ft. below

the water surface in the upper reservoir and 2 ft. below the level in the lower

reservoir. Determine the discharge.

14. A rectangular flume of unplaned timber carries water from a reser-

voir. The width of flume is 20 ft., the length is 1000 ft. and the slope is

1 ft. per 100 ft. If the entrance is sharp-cornered and the bottom of the

flume at the entrance is 4 ft. lower than the water surface in the reservoir,

determine the rate of discharge.

15. An earth canal in good condition is 60 ft. wide on the bottom and

has side slopes of 2 horizontal to 1 vertical. One side slope extends to an

elevation of 20 ft. above the bottom of the canal. The other bank, which

is a practically level meadow at an elevation of 6 ft. above the bottom of the

canal, extends back 500 ft. from the canal and then rises abruptly. The

meadow is covered with short grass and weeds. If the slope of the canal
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is 2.2 ft. per mile, determine the discharge when the water is 8 ft. deep in

the canal.

16. A flume built of planed lumber, with vertical sides, 8 ft. wide has a

grade of 2 ft. per 1000 ft. A sharp-crested weir 3.5 ft. high is constructed

across the flume. When the head of water over the weir is 3.1 ft., what

iis the elevation of water surface at a section 200 ft. upstream from the weir?

How much higher is the water surface at this section than it would be with

the same quantity of water flowing but with the weir removed?

17. A canal carries 300 cu. ft. per second of water at a depth of 5.5 ft.

The water in this canal is to be dropped to a lower elevation through a

concrete chute of rectangular cross-section, having a grade of 1 ft. in 10 ft.

The chute is to carry a uniform depth of water of 3.0 ft., the width to vary as

required to maintain this depth. Determine the width of chute at entrance,

at 100 ft. below the entrance, and at 200 ft. below the entrance. Also

determine the minimum width possible for this depth of water.

18. A canal, 58,000 ft. long (580 Sta.'s), is to be constructed with a

capacity of 300 cu. ft. per second. The canal diverts from a river and

terminates at a reservoir into which it discharges. The water surface in

the river at the point of diversion is to be maintained at an elevation of

770 ft.

(a) Water is to be diverted through six head gates, having rectangular

orifices each 2 ft. by 5 ft. Determine the head required to force the water

through these openings, assuming a coefficient of discharge of 0.80.

(6) From Sta. to Sta. 425 the canal is in earth section, having side

slopes of 2 horizontal to 1 vertical, and a depth of water of 0.3 of the bottom

width of the canal. Velocity of water is to be 2.1 ft. per second. Assume a

coefiicient of roughness of 0.0225. Determine grade or slope of canal.

(c) Between Sta. 425 and 500 the canal is in rock and is to have a semi-

circular section lined with concrete. The grade of the canal is to be 2 ft. per

1000 ft. Coefficient of roughness, 0.014. Determine the head lost at

entrance, using a coefficient of velocity of 0.92. Also determine diameter of

canal section.

(d) From Sta. 500 to Sta. 580 the section of canal is the same as from

Sta. to Sta. 425. At the reservoir end of the canal (Sta. 580) a weir is

to be constructed in order that a uniform depth of water may be maintained

throughout the entire length of earth section. Length of this weir is to

be equal to the bottom width of the earth canal. The weir has a rectangular

section, with horizontal crest 2 ft. 8 in. wide. Determine height of crest

above bottom of the canal.

(e) Tabulate the elevations of the water surface, to nearest 0.1 ft., at the

following stations: Sta. 0-1-10, Sta. 424^-90, Sta. 4254-10, Sta. 500 and
Sta. 579-1-90. (Assume A'^-l at Sta. 500.)



CHAPTER XI

HYDRODYNAMICS

130. Fundamental Principles.—Newton's laws of motion
form the basic principles of the subject of hydrodynamics. These
laws are clear and definite and lead to results that agree exactly

with experiment. Briefly stated they are as follows

:

I. Any body at rest or lq motion with a uniform velocity along a
straight line will continue in that same condition of rest or motion
until acted upon by some external force.

II. Any change in the momentum of a moving body is propor-

tional to the force producing that change and occurs along the

same straight hne in which the force acts.

III. To every action there is always an equal and opposite

reaction.

These three laws of Newton's are frequently referred to as the

Laws of Inertia, Force, and Stress, respectively. The solution of

practically any problem in hydrodynamics may be accomplished

by the direct application of these laws. It is therefore essential

that a clear conception be had of their full significance. As an aid

in acquiring this conception the following discussion is presented.

131. Interpretation of Newton's Laws.—Newton's first law of

motion is merely a statement of the now well-known fact that

matter is inert; that is, it possesses no ability, per se, to change its

condition of rest, or motion, and that any such change must be

brought about through the action of some external force, as for

instance, friction of the air in retarding the velocity of a bullet.

Since change in motion results from the application of a force

it may be assumed that the magnitude of the change in motion

will depend upon the magnitude of the force producing that

change; in other words it may be assumed that there is, as usual,

a direct relation between cause and effect. Making this assump-

tion, the second law follows naturally from the first. Momentum
is by definition quantity of motion, and is equal to the product of

211
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the mass and velocity. Designating by Zi, the momentum of a

mass of water, M, having a velocity vi.

Zi=Mwi.

If a force P acting upon this mass for a time At changes the

velocity to V2.

Z2=MV2,
and

Z2-ZI=M(V2-Vi), (1)

or
AZ= MAv,

and

ST=^n=^ <^'

since -r- = acceleration, and mass times acceleration equals force.
At

Equation (2) may be written in the form,

M
P-fl^^' (3)

or substituting for Av its equivalent (w2— Vi) and letting At equal 1

second, equation (3) becomes,

P = M{v2-vi) (4)

This means that when a force acts upon a mass and thereby

changes its velocity from vi to V2, the force is equal to the product

of the mass whose velocity is changed each second from vi to U2,

and the change in velocity.

This may be demonstrated in another manner. The amount
of work done upon any mass is equal to the gain in kinetic energy,

or

in which I is the distance through which the force P acts upon the

mass M. But

'=("4^)' (6)

Therefore, from equations (1) and (2)

Pt = M{v2-vx), (7)
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or letting t = 1 second,

P = M(w2-wi) (4)

It should be kept clearly in mind that P is the force acting

upon the mass whose velocity is changed from vi to V2. Newton's
third law of motion states that the mass reacts with a force equal

in magnitude but opposite in direction to the force P To avoid

confusion the reacting force that water exerts upon an object will

be designated by F. Hence

F=~P=-M(v2-vi)=M(vi-V2). ... (8)

Since force and velocity are vector quantities, it follows that if

a jet of water impinges against a vane which is either moving or at

rest and thereby has its velocity in any direction changed, a force F
is exerted upon the vane whose magnitude in any direction is equal

to the change in momentum per second that the jet undergoes

in the same direction. In other words the force F is equal to the

mass impinging per second times the change in velocity in the

direction of the force. The X- and F-components of the force

exerted by a jet whose path lies in the XY plane will therefore

be,

Fi= Mass impinging per secondX change in velocity along the

X-axis.

F„=Mass impinging per secondX change in velocity along the

Y-axis.

f=Vf7+f;^,

and the tangent of the angle which this resultant makes with the

-V Fy
A-axis IS -gr-

The change in velocity may be either positive or negative, the

only difference being that in the case of a decrease in velocity the

dynamic force exerted by the water on the vane is in the same

direction as flow, whereas in the case of an increase in the velocity

the dynamic force exerted on the vane is opposed to the direction

of flow. For instance, referring to Fig. 127, the flow being from

the left and the X-component of the velocity being decreased, Fx

is directed toward the right, whereas the y-component of the

velocity being increased and the flow being directed upward, Fyis

directed downward.
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132. Relative and Absolute Velocities.—Strictly speaking, all

motion is relative. No object in the universe is known to be fixed

in space. An airplane is said to be flying one hundred miles per

hour but this is its velocity only with respect to the surface of the

earth beneath it. The earth's surface itself is moving at a tre-

mendous speed both with respect to its axis and to the sun, each

of which are whirling through space at a still greater rate.

It is nevertheless convenient in connection with this subject

to consider all motion with respect to the earth's surface as abso-
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plate. It is assumed that the plate is large enough with respect to

the size of the jet so that the jet is deflected through a full 90°.

The pressure exerted on the plate varies from a maximum at the

axis of the jet where it is very nearly equal to that due to the full

velocity head, to zero at a distance approximately equal to the

diameter of the jet from its axis. The total pressure exerted is

equal to the product of the mass impinging per second and the orig-

inal velocity of the jet, since the final velocity of the water as it

leaves the plate has no component in its original direction.

Hence, the force exerted on the plate is,

F =Mv=-^v= , (9)

where M and Q represent respectively the mass and quantity

striking the plate per second, and a and v are the cross-sectional

area and mean velocity of the jet, all terms being expressed in

the foot-pound-second system.

134. Jet Impinging Normally on a Moving Flat Plate.—Con-

sider the case of a jet impinging normally against a flat plate mov-

ing in the same direction as the jet or at least having a component

of its motion in that direction. It is assumed that the plate has

a uniform velocity, being restrained from accelerating by some

external agency. The mass impinging per second is

M'=^='^, (10)
9 9

where Q' is the quantity of water striking the plate in cubic feet

per second, a is the cross-sectional area of the jet in square feet and

u is the relative velocity of the jet with respect to the plate. The

change in velocity is v— v' = u, since the velocity in the direction

of the force is changed from v to v' and the jet leaves the plate

tangentially with a velocity whose Z-component is equal to the

velocity of the moving plate. The force acting on the plate is

F=M'u= = (11)
9 9

135. Jet Deflected by a Fixed Curved Vane.—The jet, shown

in Fig. 127, is deflected through an angle 5 by a fixed, curved,

trough-shaped vane AB. It is assumed that the vane is so smooth

that friction may be neglected so that the velocity with which the
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jet leaves at B may be considered the same as that with which it

strikes at A. It is also assmned that the vertical height of the

vane is so small that gravity will not appreciably retard the velocity

of the jet. Considering the horizontal and vertical components

of the force acting on the vane,

„ ,,, , wav, • „, wav^,^ „, ,,„.
Fi =M{v-Vi)^— (D-«)cose)= (1-cose), . (12)

F^ = M{0—Vy) = (y sm B) = sm B. (13)

Fig. 127.—Jet impinging on a fixed Fig. 128.—Jet impinging on a curved,

curved vane. moving vane.

The negative sign in equation (13) means that the force, Fy,

is exerted in a direction opposite to Vy, or in other words, down-
ward.

The resultant force is

/^ =VFJ+^=^V2(l-cosg) =g^sini9 (14)
a y

If the angle of deflection is greater than 90°, cos 6, in equation (12)

becomes negative. If the jet is deflected through a full 180°,

d=—l, and sin 5= 0, and the equations become

F^ = 2Mv = , (15)

F„ = 0. (16)

136, Jet Deflected by a Moving Curved Vane.—Consider the

vane shown in Fig. 128 to be moving with a uniform velocity v'
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in the original direction of the jet. The absolute velocity of the

jet as it unpinges at 4 is v and its relative velocity with respect

to the vane isv— v' = u. The mass impinging per second is there-

"WCLU
fore . Neglecting friction the relative velocity of the jet with

respect to the vane remains unchanged while flowing from A to B
so that the jet leaves the vane at B with a relative velocity u in

a tangential direction, tne X-component of which is u cos 6.

The change in velocity along the Z-axis is therefore u-u cos

or m(1 — cos 6) and

wau-

In a similar manner the change in velocity in a vertical direc-

tion is from zero to u sin 6 and therefore

F = —waw sin 6 (18)

The absolute velocity and direction of the jet as it leaves the

vane are shown in Fig. 128 by the vector Va which is the result-

ant of the relative velocity u and the velocity, v', of the vane.

If a jet is directed against a double-cusped vane as shown in

Fig. 129 (a) so that half the jet is deflected by each cusp through

equal angles, F^ will be determined by equation (17) but Fy is zero
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since the two F-components balance being equal and opposite in

direction.

If a jet is deflected through a full 180° either by a single- or

double-cusped vane as shown in Fig. 129 (b) and (c), obviously,

for a stationary vane,

F,=F = 2Mv =^^, (19)

and for a moving vane

F. = f =2M'M=^^^ (20)

If a series of vanes are so arranged on the periphery of a wheel

that the entire jet, directed tangentially~to the circumference is

striking either one vane or another successively, the mass imping-

ing again becomes M=— and the force exerted is,

F.^'^uil-cosd), (21)

F„ =— Msine (22)
9

It should be noted that when F^ is radial, Fx is the only com-

ponent of the force tending to produce rotation.

137. Work Done on Moving Vanes.—Since work is equal to

force times distance it is apparent that for a jet to do any work

upon a vane, the vane must be moving with a velocity between

zero and the velocity of the jet since at these limiting velocities

either the distance or the force is equal to zero. The question

then arises as to what velocity the vane should have, for any

given velocity of jet, to perform the maximum amount of work.

The amount of work done per second is the product of the

force acting in the direction of motion and the distance through

which it acts. Assuming that the direction of motion of the vane

is parallel with the direction of the jet, the force acting is (Art, 136),

Fx^'^^^^^d-cose) (23)

and the distance through which it acts per second is equal to the
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velocity of the vane, v'. Representing the work done per second,

expressed in foot-pounds, by G,

^^,m(«-V)_^^_^^^

g

Considering v' as the only variable in this expression and equat-

ing the first derivative to zero, the relation between v and v' may
be determined for which G is a maximum.

dG_wa(l— cos 6)

from which

j^ («2-4w'+3«'2)=0,
do q

V
v' = v and v' = ^. (25)

When «'=», no work is done since the force exerted is then

zero and this value represents a condition of minimum work.

V
For maximum work therefore v' = -^-

In the case of a series of vanes so arranged that the entire jet

strikes either one vane or another successively, the force exerted

in the direction of motion, which is assumed parallel with the

direction of the jet is (Art. 136),

F^=y^{v-v'){l-eose) (26)

The distance through which this force acts in one second is v',

and therefore,

G='^{v-v'){l-cosey (27)

'Differentiating, and equating to zero,

dG

_

wav{l — cos 6)

dv'~ g

and for maximum work

(d-2w')=0,

'-2 (28)
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Substituting this value of v' in equation (27),

G = ?^'(l-cos0), (29)

or

G=:^(l-cos0), (30)

which is ^^ ;r times the total kinetic energy available in the

jet. For 0=180° this expression equals unity and

0="^, (31)

the total kinetic energy of the jet being converted into work.

This also appears from considering that the relative velocity of

the jet as it leaves the vane is 75, which is also the velocity of the

vane. These two velocities being equal and opposite in direction

have a resultant of zero. The water thus leaves the vane with

zero velocity, signifying that all of its original energy has been

utilized in performing work.

The above principles are made use of in the design of impulse

turbines, which consist of a series of vanes attached to the per-

iphery of a wheel. The angle d must be somewhat less than 180°

so that the jet in leaving a vane will not interfere with the suc-

ceeding vane. Making the angle Q equal to 170° in place of 180°

reduces the force applied to the wheel by less than 1 per cent.

138. Forces Exerted upon Pipes.—In the preceding articles

of this chapter the discussion has been restricted to forces exerted

by jets impinging against flat and curved surfaces. As it was

always considered that the flow was free and unconfined the only

forces acting were dynamic.

Consideration will now be given to the longitudinal thrust

exerted upon a section of pipe by water flowing through it under

pressure. This thrust will usually be found to be the resultant of

both static and dynamic forces. The transverse forces which

determine the necessary thickness of pipe were discussed in

Art. 29.

139. Straight Pipe of Varsring Diameter.—Under conditions of

steady flow through a straight pipe of varying diameter there is a
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longitudinal thrust exerted upon the pipe. This thrust is the
resultant of a dynamic force, a static pressure, and frictional

resistance.

Fig. 130 shows a straight section of converging pipe. Let pi,

oi, and vi represent respectively the pressure, area, and mean veloc-

ity at AB and p2, 02, and V2 the corresponding values at CD.
In flowing from AB to CD the water is accelerated from vi to V2

and the force, P, producing this acceleration is the resultant of

all the component forces acting on the mass ABCD. These forces

consist of the pressures on the sections AB and CD, the pressure

exerted by the pipe walls ACBD and the force of gravity, the last

Fig. 130.

of which can be neglected since it acts vertically and has no com-

ponent in the direction of acceleration. The pressures on AB and

CD are ai,pi and a2P2 respectively, aipi acting in the direction

of acceleration and a2P2 being opposed to it. The pressure, dR,

exerted on the water by any differential area, da, of the pipe

walls win be inchned shghtly from the normal toward the direction

of flow on accoimt of friction. The vertical component of dR,

being normal to the direction of acceleration may be neglected,

leaving dRx as the only component to be considered. AU the

values of dRx for the various elementary areas of pipe wall, being

parallel and acting in the same direction, may be combined into

the resultant, Rx, whose magnitude is as yet unknown but whose
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direction is opposed to acceleration. Therefore the force pro-

ducing acceleration,

P= aipi — a2P2— Rx (32)

But in Art. 131 it was shown that

it

and therefore, from equations (32) and (33),

_ waivi. .

Rz= aipi — a2P2 (t'2— fi).

(33)

(34)

Since Rx is the X-component of the forces exerted upon the water

by the pipe it follows that the thrust exerted upon the section of

pipe by the water must be equal and opposite to Rx, or in other

words the thrust will act toward the right in Fig. 130.

Considering a straight section of pipe of constant diameter

throughout, equation (34) reduces to

Rx-=a(pi-p2), (35)

since ai = 02=o, and t)i=?;2. In equation (35) pi — p2 is the drop

in pressure resulting from friction between sections AB and CD.

140. Pipe Bends.—The thrust exerted upon a curved section

of pipe of either constant or

varying diameter is the re-

sultant of component forces

similar to those discussed in

the preceding article. The
chief difference lies in the fact

that the resultant thrust on

a curved section of pipe has

both X- and F-components

since there is a change in ve-

locity along both of these axes.

Fig. 131 shows a pipe

bend, having a diameter de-

creasing from AB to CD and

a deflection angle, 6. Let Rx
and Rp represent the X- and

y-components of the forces exerted by the pipe upon the water.

FiQ. 131.



WATER HAMMER IN PIPE LINES 223

The X- and y-components of the thrust exerted by the water upon
the pipe are equal in magnitude but opposite in direction to Rx
and Ry respectively. Assuming that the bend lies in a horizontal

plane so that the action of gravity is normal to the direction

of acceleration and therefore may be ignored, the resultant X and
Y forces producing acceleration are,

Pi = aiPi-a2P2Cosfl-Jf?x=— (j;2Cos9-»i), . (36)

Pr=-a2P2 sin d+R^=~^V2 sine, (37)

the right-hand members in these equations representing the in-

crease in momentum along the X- and F-axes resulting from the

accelerating forces.

From the above equations,

Rx= aipi — a2P2 cos d+~(vi-V2 cose), . . . (38)

R„ = a2p2sine-\—^«;2sine (39)

If the pipe bend is one of constant diameter throughout,

ai=a2, fi=y2, and pi=p2 (approximately), and the equations

reduce to

/i;x=(ap-f—Vl-cosfl), (40)

R,= (ap+'^\ sine (41)

If the angle e equals 90° these equations become

flx= i?» =ap+— (42)

141. Water Hammer in Pipe Lines.—In Fig. 132 is shown a

pipe line leading from a reservoir, A, and discharging into the air at

B near which is located a gate valve. If the valve is suddenly

closed a dynamic pressure is at once exerted in the pipe in excess of

the normal static pressure. The magnitude of this pressure is

frequently much greater than that of any static pressure to which

the pipe may ever be subjected and the possibility of the occurrence
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of such pressure must therefore be investigated in connection with

the design of any pipe Hne of importance.

This dynamic pressure, commonly called water hammer, is

the result of a sudden transformation of the kinetic energy of the

moving mass of water within the pipe into pressure energy. Since

force equals mass times acceleration, or

dv

It'
P =M (43)

it follows that if the velocity of the mass M could be reduced from

V to zero instantaneously, this equation would become

P=M
0'

(44)

or in other words the pressure resulting from the change would be

infinite. Such an instantaneous change is, however, impossible.

J.

Fio. 132.

Consider the conditions within the pipe immediately following

the closure of the valve. Let h, h, h, ... In represent infinitesi-

mally short sections of pipe as shown in Fig. 132. The instant

the valve is closed, the water in contact with it in section h is

brought to rest, its kinetic energy is transformed into pressure

energy, the water is somewhat compressed and the pipe wall

with which it is in contact expands slightly as a result of the

increased stress to which it is subjected. Because of the enlarged

cross-sectional area of l\ and the compressed condition of the water

within it, a greater mass of water is now contained within this sec-

tion than before the closure. It is evident then that a small volume

of water flowed into section h after the valve was closed. An
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instant later a similar procedure takes place in h and then in h, so

that evidently a wave of increased pressure travels up the pipe

to the reservoir. The instant this wave reaches the reservoir the

entire pipe is expanded and the water within it is compressed

by a pressure greater than that due to the normal static head.

There is now no longer any moving mass of water within the pipe,

the conversion of whose kinetic energy into pressure energy serves

to maintain this high pressure and therefore the pipe begins to

contract and the water to expand with a consequent return to

normal static pressure. This process starts at the reservoir and

travels as a wave to the lower end. During this second period

some of the water stored within the pipe flows back into the

reservoir but on account of the inertia of this moving mass an

amount flows back greater than the excess amount stored at the

end of the first period so that the instant this second wave reaches

the valve the pressure at that point drops not only to the normal

static pressxire but below it. A third period now follows during

which a wave of pressure less than static sweeps up the pipe to

the reservoir. When it reaches the reservoir the entire pipe is

under pressure less than static but since all the water is again at

rest the pressure in l„ immediately returns to the normal static

pressure due to the head of water in the reservoir. This starts a

fourth period marked by a wave of normal static pressure moving

down the pipe. When the valve is reached the pressure there is

normal and for an instant the conditions throughout the pipe are

similar to what they were when the valve was first closed. The

velocity of the water (and the resultant water hammer) is now,

however, somewhat less than it was at the time of closure because

of friction and the imperfect elasticity of the pipe and the water.

Instantly another cycle begins similar to the one above

described, and then another, and so on, each set of waves succes-

sively diminishing, until finally the waves die out from the influ-

ences above mentioned.

Equation (44) shows that for instantaneous closure of valve

the pressure created would be infinite if the water were incom-

pressible and the pipe were inelastic. Instantaneous closure is,

however, physically impossible. To determine the amount of

excess pressure actually resulting from water hammer it is neces-

sary to take into consideration the elasticity of the pipe and the

compressibility of water. This leads to a rather lengthy mathe-
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matical analysis which will here be avoided and there will be given

only the resulting workable equations. The following nomen-

clature will be used, all units being expressed in feet and seconds

except E and E', which are in pounds per square inch:

6 = thickness of pipe walls;

D = inside diameter of pipe;

£r= modulus of elasticity of pipe walls in tension;

^' = modulus of elasticity of water in compression;

ff= acceleration of gravity;

h = head due to water hammer (in excess of static head)

;

H= normal static head in pipe;

L= length of pipe line;

r=time of closing valve;

t;=mean velocity of water in pipe before closure of valve;

Kb= velocity of pressure wave along pipe.

142. Formulas for Water Hammer.—In the following dis-

cussion whenever the term " pressure " is used it is understood to

mean " pressure due to water hammer " and is the amount of

pressure in excess of that due to the normal static head.

If the valve -is closed instantaneously the pressure in h imme-
diately rises to pmax and remains at this value while the pressure

wave travels to the reservoir and returns. The time required
or

for the wave to travel to the reservoir and back to the valve is—

.

The pressure in Z„ reaches this same pmax but remains at that

value only for an instant. At any intermediate section, pmax
is maintained only until the wave of reduced pressure reaches that

section. If the time taken to completely close the valve is

2L "
exactly —

, pmnx will occur only in section h, and will last only

for an instant, being immediately lowered by the return of the

static pressure wave. If the time of closing the valve is greater
or

than —
, pmax will never be attained since the wave of reduced

pressure will then have reached h before the valve is completely

closed or pmax is reached.

Evidently two formulas are necessary; one to determine the
maximum water hammer, when the time of closure is less than
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2L—, and the other to determine the ordinary water hammer that

lid
occurs when the time of closure is greater than — , as is usually

I'm

the case.

The same formula for the determination of maximum water
hammer has been qufte generally adopted. The general expres-

sion is,

«max= -—

,

(45)

where
4660

VW=
I

y,^ (46)VjO . :^.

Substituting this value in equation (45),

145?;

^^ (47)

For steel pipe this reduces to

I,
145w ..„.

hjns,K = —j= (48)

^1+0.01 f

Frequently these expressions appear in different forms but they

may all be reduced to the above forms.

There is no such general agreement as to the proper formula to

be used for the determination of ordinary water hammer when T
or

is greater than — . Many formulas have been derived, some

giving results twice as great as others. Certain assumptions as

to the manner of valve closure, the effect of friction and the

manner in which the waves are reflected, etc., must be made

before any theoretical formula can be derived. It appears that

the main reason for the wide discrepancy in results lies in the

difference in these fundamental assumptions.

Assuming that the valve is closed in such manner that the

rate of rise in pressure wiU be constaat throughout the entire

closure, OA, Fig. 133, represents the variation in pressure at the
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valve dui-ing the time T, provided that no return pressure wave
or

interferes. After a time, — , however, the returning wave will

reach the valve and assuming that its intensity has been undi-

minished by friction or other cause, it will exactly annul the

tendency for the pressure to increase, due to continued closing,

and as a result the pressure remains constant during the remainder

Fig. 133.

of the time T, as shown by the horizontal line BA'. From
similar triangles,

9 Vu,

From which

h =
2Lv

(49)

This formula was first proposed by Professor Joukovsky ^ of

Moscow, Russia, in 1898 and, it is claimed, was substantiated by a

series of experiments which he conducted.

Other commonly used formulas ^ are as follows

:

(AUievi)

' N. Joukovsky: Trans, of Prof. N. Joukovsky's paper on Water Ham-
mer, by Boris Simin; Journal American Waterworks Association (1904).

2 Milton M. Warren: Penstock and Surge-Tank Problems. Trows.

Amer. Soc. Civ. Eng., vol. 79 (1915). Contains discussions of all commonly

used water hammer formulas.
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where

^ [gHTj '

where

OATft
h ='^^{M+VW+N'^), . . (Johnson)

M= Lv and N= 2gHT,

fi' = —/ j-\) (Warren)

K-^J'

h=-=, (Mead, etal.)

Joukovsky's formula gives results twice as great as Mead's

formula. Johnson's formula can readily be reduced to Allievi's.

It may be noted that these two formulas make h vary with H,

which the other formulas do not do. Justification for this varia-

tion is not apparent.

Eliminating Johnson's formula (which reduces to AllieAd's),

no two of the above formulas give results that are at all similar

under all conditions. Discrepancies of from 100 to 200 per cent

are possible. A comprehensive and carefully conducted series of

experiments are necessary before any formula for ordinary water

hammer can be relied upon to give trustworthy results.

PROBLEMS

1. A jet 1 in. in diameter and having a velocity of 25 ft. per second strikes

normally against a fixed, flat plate. Determine the pressure on the plate.

2. In Problem 1, what would be the pressure on the plate if it were

moving with a uniform velocity of 10 ft. per second in the same direction

as the jet?

3. What should be the velocity of the plate, in Problem 2, if the jet is to

perform the maximum amount of work? Determine the corresponding

amount of work in foot-pounds per second.

4. A jet having a diameter of 2 in. and a velocity of 40 ft. per second

is deflected through an angle of 60° by a fixed, curved vane. Determine the

X- and F-components of the force exerted.

6. Solve Problem 4 if the vane is moving with a velocity of 25 ft. per

second in the same direction as the jet.

6. A li-in. nozzle has a coefficient of velocity of 0.97 and a coefiicient

of contraction of unity. The base of the nozzle has a diameter of 4 in.,

at which point the gage pressure is 80 lbs. per square inch. The jet is
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deflected through an angle of 150° by a double-cusped vane that has a

velocity, in the direction of the jet of 30 ft. per second. What is the pressure

exerted on the vane and what is the amount of work done expressed in

foot-pounds?

7. In Problem 6 determine the velocity the vane must have if the jet

is to perform the maximum amount of work. What is the maximum work

in foot-poimds?

8. If the jet, in Problem 6, strikes a series of vanes so arranged on the

periphery of a wheel that the entire jet is deflected through an angle of 170°,

what is the maximum amount of work that can be done?

9. A horizontal straight pipe gradually reduces in diameter from 12 in. to 6

in. If, at the larger end, the gage pressure is 40 lbs. per square inch and the

velocity is 10 ft. per second, what is the total longitudinal thrust exerted

on the pipe? Neglect friction.

10. A bend in a pipe line gradually reduces from 24 in. to 12 in. The
deflection angle is 60°. If at the larger end the gage pressure is 25 lbs. per

square inch and the velocity is 8 ft. per second, determine the X- and F-com-

poneuts of the dynamic thrust exerted on the bend. Also determine the

X- and F-components of the total thrust exerted on the bend, neglecting

friction. *

11. A 24-in. cast-iron pipe f in. thick and 6000 ft. long discharges water

from a reservoir under a head of 80 ft. What is the pressure due to water

hammer resulting from the instantaneous closure of a valve at the discharge

end? ,,r

12. If the time of closing the valve, in Problem 11, is 6 sec, determine

the resuBing pressure due to water hammer, comparing results obtained by
use of formulas by Joukovsky, Johnson, Warren and Mead.
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Barometer, merciu'y, 15

water, 16

Barr's experiments, 123

Base formula, 62

Bazin experiments, 111

open-channel formula, 191

submerged-weir formula, 121

weir formula, 116

Bends in pipes, loss of head, 143, 162

coefficients for, 163

thrust at, 222

BernoulU's equation, 59, 63, 74. 87,

141

Bernoulli's theorem, 57

application to hydrostatics, 60

in practice, 60

Boiling point of water, 2

Borda's mouthpiece, 91

Bridge piers, 195

Broad-crested weirs, 129

Buoyancy, center of, 39

Buoyant force, 39, 40

Canals, 199

Capillary action, 4, 16

Cast-iron pipes, coefficients, 148, 149,

152, 153

Center of buoyancy, 39, 42

Center of gravity, 31, 39, 42

Center of pressure, 24, 29, 31, 32

and center of gravity, 31, 32

Channel entrance, 131, 202, 203

Channel of approach, 71, 76, 103, 108

Characteristics of jet, 71

Chezy formula, open channels, 185

pipes, 146

Chutes, 129

Cippoletti weir, 124

Circular channels, 176, 201

orifice, 71

Coefficient of contraction, nozzles, 89

orifices, 77, 78

tubes, 86, 88, 92, 93

weirs, 110

Coefficient of discharge, nozzles, 89

orifices, 78, 80

submerged orifice, 94

tubes, 86, 93

Coefficient of roughness, 185

Coefficient of velocity, nozzles, 90

orifices, 77, 78

tubes, 86, 93

weirs. 111

Coefficients of discharge, nozzles, 90

orifices, 79

tubes, 86

231
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Coefficients, hose, 150

open channels, 187, 190, 191

pipes, 148, 149, 153, 161, 162, 163

weirs, 108

Coefficient, weir. 111

Components of pressure, 33, 35

Compound pipes, 168

Compressibility of water, 3

Computations, accuracy of, 5

Concrete pipes, coefficients, 148, 149,

153

Conduits, 135, 199

Conical tubes, 88

Conservation of energy, 59

Converging tubes, 88

Continuity of discharge, 53

of flow, 53, 140, 180, 202

Contraction, coefficient of, 77, 78, 89,

92, 110

crest, weirs, 101

end, weirs, 102

gradual, pipes, 143, 159

in channels, 183, 192

of jet, 72, 76, 77, 88, 92

of nappe, 103, 108, 110

sudden, pipes, 143, 158

suppressed, 84, 102

surface, weirs, 102

vertical, weirs, 103

Converging tubes, 88

Crest contraction, 101

Critical velocity, 136

Cross-section, most efficient, 198

Curves, backwater, 205

in open channels, 183, 196

in pipes, 143, 162

Curved surface, pressure on, 33

Dams, coefficients for, 127

pressure against, 33, 34

Darcy, experiments on Pitot tube, 65,

66

modification of Pitot tube, 68

pipe formula, 147

Density of water, 2

Depth of flotation, 39

Differential gage, 18

Direction of resultant pressure, 7

Discharge, 52

continuity of, 53, 140, 180

head lost at, 143, 155, 157, 183

under falUng head, 96

Discharge coefficient, nozzles, 89

orifices, 78

tubes, 86, 93

Discussion of open-channel formulas,

191

of pipe formulas, 154

of weir formulas, 118

Distance, unit of, 1

Distilled water, properties of, 2

Distribution of velocities, 108, 138,

176

Diverging tube, 90

Divided flow, 169, 206

Dynamic force, 214^-229

Efficient channel section, 198

Elasticity of water, 3

Elevation and air pressure, 9

Emptying vessel, 97

End contractions, weirs, 102

suppressed, 102

Energy and head, 54

kinetic, 54, 57

of position, 55, 57

of water in channel, 109, 179

of water in pipe, 139

per poimd of water, 57, 140

potential, 55, 57

pressure, 56

English system of units, 1

Enlargement of section, channels, 193

pipes, 143

Entrance losses, channels, 183

pipes, 143, 165, 156

Entrance to channels, 131

Equation of continuity, 53, 181, 202

Falling head, discharge under, 96
FaUs, 117

Floatmg bodies, 38

stability of, 39

Flow, continuity of, 53, 140, 180, 202

in open channels, 176-209

in rivers, 196
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Flow, non-uniform, 53, 201

over weirs, 101-134

steady, 53

stream line, 54, 136

through nozzles, 89

through orifices, -71-99

through pipes, 135-175

through tubes, 85-93

turbulent, 54, 136

uniform, 53

Fluids, definition, 1

Flumes, 199

Force, acting on mass, 212, 213

exerted on pipe, 220-223

exerted on vane, 213-218

Francis coefficient for weirs. 111

experiments. 111

formula for end contractions, 112

weir formula, 115

Free surface of Uquid, 9

Freezing temperature of water, 2

Friction, 52

and distribution of velocities, 108,

138, 176

BernouUi's equation with, 59, 141

coefficients for hose, 150

coeflScients for open channels, 187,

190, 191

coefficients for pipes, 148, 149, 153

formulas for open channels, 185-

191

formulas for pipes, 146-154

independent of pressiire, 145

in open channels, 176, 184

in orifices, 76, 77

in pipes, 138-146

in Venturi meter, 64

of flowing water, 59, 138, 176

over weirs, 108

Fteley and Steams, experiments. 111

weir formula, 116

Fundamental orifice formula, 73

Gage, differential, 18

hook, 131

mercury, 17

oU, 19

water stage, 132

Gage pressure, 10, 16

Ganguillet and Kutter, 185

Gases, 1, 9

Gates, 95, 195

and valves, 143, 162

coefficients for, 96

pressure on, 26, 28, 32

Grade line, hydraulic, 144, 154, 164,

184, 191

Gradient, hydraulic, 144, 154, 164,

184, 191

Hazen-Williams formula, 150

Head, definition of, 54

energy and, 54

lost at bends or curves, 143, 162,

183, 196

lost at discharge, 143, 155, 157, 194

lost at entrance, 143, 1S5, 156, 193

lost at obstructions, 143, 162, 195

lost by contractions, 143, 158, 192

lost by enlargements, 143, 160, 193

lost by friction, 59

lost by friction in open channels,

181, 183, 184

lost by friction in pipes, 140, 143,

144

lost in nozzles, 90

lost in orifices, 81

lost in tubes, 87

measurement of, 131

pressure, 13, 16, 56

velocity, 55

Height of weir, 103

Herschel, Venturi meter, 61

Hook gage, 4, 131

Horizontal and vertical components

of pressure, 32, 34

Horizontal orifice, 71, 75

Horton's values of "n," 187

weir coefficients, 127

Hose, 150

coefficients, 150

Hydraulic grade line, 144, 154, 164,

184, 191

gradient, 144, 154, 164, 184, 191

jack, 13

radius, 135, 176
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Hydraulics, definition, 1

or rivers, 196

Hydrodynamics, 211-230

definition, 1

fundamental principles, 211

Hydrokinetics, 1, 51-210

Hydrostatic pressure, 7-37

Hydrostatics, 1, 7-44

Immersed and floating bodies, 38-44

Impurities in water, 2

Incomplete contractions, 84, 103

Intensity of pressure, 7, 8, 10, 30, 35

Inversion of jet, 73

Inward-projecting tubes, 93

Irregular sections of channels, 197

Jack, hydraulic, 13

Jet, characteristics of, 71

contraction of, 72, 76, 77, 88, 92

definition, 71

deflected by cui-ved vane, 216

force of, 213-218

forms assumed by, 72

impinging on fixed plate, 214

impinging on moving plate, 215

inversion of, 73

path of, 82

pressure in, 72

velocity with respect to vane, 217

work done by, 218

Johnson water-hammer formula, 229

Joukovsky, water-hammer experi-

ments, 228

formula, 228

Kinetic energy, 54, 57

in channel of approach, 109

in open channels, 109, 179

in pipes, 139

King pipe formula, 152

submerged-weir formula, 121

weir formula, 117

Kutter formula, 185

table for solving, 186

Lea, investigation of pipes, 152

Linear acceleration, 45

Liquid, buoyant force of, 38

definition, 1

free surface of, 9

in motion, 51

intensity of pressure within, 7, 8

relative equilibrium, 45

rotating, 47

surface tension, 4

uniformly accelerated, 45

water most common, 51

Long pipes, 166

Loss of head, at discharge, 143, 155,

157, 183, 194

at entrance, 143, 155, 156, 183, 194

due to bends or curves, 143, 162,

183, 196

due to contractions, 143, 158, 192

due to enlargements, 143, 160, 193

due to friction in channels, 181, 184

due to friction in pipes, 140-146

due to obstructions, 143, 162, 195

in nozzles, 90

in open channels, 181

in orifices, 81

in pipes, 140

in tubes, 87

Manning formula, 188

Mead water-hammer formula, 229

Mean velocity over weu-s, 107

Measurement of head, 131

Mercury barometer, 15

gage, 17

Metacenter, 40

Metacentric height, 40

Meter, Venturi, 61

Modifications of fundamental weir

formula, 112

Modulus of elasticity, 3

Moment of inertia, 25

Momentum, definition, 211

Motion, stream line, 54, 136

turbulent, 54, 136

Mouthpiece, Borda's, 91

Nappe, 101

contracted section of, 103

contraction of, 108, 110

depth of mean velocity in, 108
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Nappe, pressure in, 104

velocities in, 104, 107, 111

Negative pressure, 10

Newton's laws of motion, 211

Non-uniform flow, 53, 201

Nozzles, 89

Numerical computations, 5

Obstructions in channels, 183, 195

in pipes, 143, 162

Oil-differential gage, 19

Open-channel friction formulas, 185-

191

Bazin formula, 191

Chezy formula, 185

Kutter formula, 185, 188

Manning formula, 188

Open channels, backwater in, 204

bends or curves in, 183, 196

contractions in section, 183, 192

description and definition, 176

discussion of formulas, 191

divided flow in, 206

efficient section for, 198

energy of water in, 109, 179

enlargement in section, 183, 193

entrance to, 131, 183

friction in, 176

hydraulic gradient of, 184, 191

hydrauhc radius of, 176

loss of head in, 181

non-imiform flow, 201

obstructions in, 183, 195

water surface of, 184, 191

wetted perimeter of, 176

Orifice, circular, 71

coefficients, 76

definition and description, 71

discharge under falling head, 96

flow through, 71-85, 93-98

fundamental formula, 73

head lost in, 81

horizontal, 71, 75

partially submerged, 94

rectangular, 71, 82

square, 71

submerged, 93

suppressed contraction, 84

Orifice, under low heads, 82

vertical, 71

with velocity of approach, 80

Parabolic weir, 101

Partially submerged orifices, 94

Pascal's law, 8

Path of jet, 82

Perfect liquid, 4

Piezometer tubes, 5, 16

Pipe-friction formulas, 146-154

Chezy formula, 146

Dracy formula, 147

Hazen-WilUams formula, 150

King formula, 152

non-turbulent flow, 154

Pipes, bends or curves in, 143, 162

branching, 166

coefiicients, 148, 149, 151, 153

compound, 168

continuity of flow, 140

contractions in, 143, 158

critical velocity in, 136

description and definition, 135

discharge from, 143, 155, 157

divided flow in, 169

energy of water in, 139

enlargements in, 143, 160

entrance to, 143, 155, 156

flow through, 135-175

force exerted upon, 220

friction coefficients, 148, 149, 153

friction in, 138, 144

hydraulic gradient, 144, 154, 164

hydraulic radius of, 135

loss of head in, 140

more than one diameter, 142, 172

obstructions in, 143, 162

special problems, 165

tensile stress iu walls, 35

thrust at bends, 222

viscosity, effect on friction, 145

water hammer in, 223

wetted perimeter of, 135

Piston, 13, 56

Pitot tube, 65-69

Plate, jet impinging against, 214, 215

Potential energy, 55, 57
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Pressure, absolute and gage, 10

atmospheric, 9, 15

center of, 24, 29, 31

energy, 56, 62

head, 13, 16,' 56

intensity of, 7, 8, 10, 30, 32, 35

negative, 10

on curved surfaces, 33, 35

on plane areas, 23

on surfaces, 23-37

relative, 10

transmission of, 13

vapor, 14, 164

Principle of Archimedes, 38

Principles of equilibrium, 8

Principles of hydrokinetics, 51-70

Principles of hydrostatic pressure, 7-

22

Pumps, suction, 20

Radius, hydraulic, 135, 176

of bends in pipes, 163

Reaction of jet, 213

Rectangular channels, 176, 199

orifice, 71, 82

weir, 101

Relative and absolute velocities, 214

Relative equilibrium of liquids, 45-50

Relative pressure, 10

Resultant pressure, direction of, 7, 33

position of, 32

Rivers, hydraulics of, 196

Rotating vessel, 47

Salt water, 3

Scow, stability of, 42

Section of greatest efficiency, 198

Semicircular channel, 198

Sewers, 135, 176

Ships, stabiMty of, 40

Siphon, 20

Skin of water surface, 4

Slope, "s," 145, 184

Special pipe problems, 165

Specific gravity of mercury, 17

of water, 2

Square orifice, 71

Stability of scow, 42

Stability of ship, 40

Standard short tube, 85

Steady flow, 53

Stream line motion, 54, 136

Submerged bodies, 38

orifices, 93

weirs, 95, 118, 120, 195

Suction pumps, 20

Sudbury conduit, 177

Summit of pipe, 164, 165

of siphon, 20

Suppressed contraction, orifices, 84

Suppressed weirs, 102

Suppression of contraction, 84, 102

Surface contraction, 102

Surfaces, pressure on, 23-37

Surface tension, 4, 177

Tangential stress of water, 1, 4, 8

Temperature, 2

effect on critical velocity, 138

effect on viscosity, 138

effect on weight of water, 2

Tensile stress in pipe walls, 35

Theoretical discharge over weirs, 105

velocity over weirs, 107

velocity through orifices, 74

Thickness of pipes required, 35

Thompson's experiments, 123

Time of emptying vessel, 97

Time, unit of, 1

TorricelU's theorem, 76

Transmission of pressure, 13

Trapezoidal channels, 176, 199

weirs, 123

Triangular weirs, 121

Tube, definition of, 71

Tubes, capillary action in, 4

converging, 88

diverging, 90

immersed in flowing water, 65

standard short, 85

Turbulent motion, 54, 136

Uniform flow, 53

Units in hydraulics, 1

Unsteady flow, 53

U-tube, 17
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Vacuum, 10, 17

amount of, 10

perfect, 10

Vane, jet deflected by, 215, 216

fixed curved, 215

moving curved, 216

work done on, 218

Vapor pressure, 14, 164

variation with temperature, 15

Velocities, distribution of, 138, 176

in vertical, 177

Velocity, absolute and relative, 214

at any depth, over weirs, 104

critical, 136

curves of, 177

from orifices, 74

head, 55, 81

of approach, orifice, 71, 75, 76, 78,

80

weir, 103, 108, 112, 114, 120, 128

Velocity coeflBcient, nozzles, 90

orifices, 77, 78

tubes, 86, 93

weirs. 111

Vena eontracta, 72

Venturi meter, 61

Vertical contraction, 103

Vertical jets, 75

Vertical orifice, 71

Vertical velocity cm-ves, 177

Vessel, rotating, 47

time of emptying, 96

with constant accelei-ation, 45

Viscosity, 4, 137, 143

Warren water-hammer formula, 229

Water barometer, 16

boiUng point of, 2

compressibility of, 3

dynamic force, 214-229

freezing point of, 2

hammer, 223

maximum density of, 2

physical properties of, 2-5

Water, weight of, 2

Weight of submerged bodies, 38
of mercury, 17

of water, 2

unit of, 1

Weir, broad crested, 129

channel of approach, 71, 76, 103,

108

Cippoletti, 124

coefficient, 111, 127

coefficients, 108, 110, 111

conditions for accurate use, 132

definition and description, 101

discharge formulas for sharp crest,

115

discussion of formulas, 118

experiments, 111, 115

formula for mean velocity, 105

fundamental formulas, 83, 107, 112

head measurement, 131

height of, 103

modification of fundamental for-

mula, 112

not sharp-crested, 101, 103, 125

range of accuracy, 132

rectangular, 101

sections, 126

sharp-crested, 101

submerged, 95, 118

theoretical formula for discharge,

105

transformation of formula, 113

trapezoidal, 101, 123

triangular, 101, 121

velocity of approach to, 103

with end contractions, 102, 112

with end contractions suppressed,

102

Wetted perimeter, 135, 176

Wooden pipes, coefficients, 148, 149,

153

Work done on vane, 218

on mass of water, 58
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CHAPTER II. Pages 21-22

I. (a) 2496, (6) 17.3, (c) 4612, (d) 32.0. 2. (a) 566, (b) 3.93,

(c) 2682, (d) 18.63. 3- W 25,085 lbs. gage pressure, (b) 158.8 lbs.

4. (a) 27.12 ft., (b) 24.7 in. 5. .36 lb. per sq. in. abs. or —11.74 lbs.

per sq. in. gage. 6. (a) 16.97 ft., (b) 230.8 ft. 7. 11,520 lbs.

8. 54.1 in. 9. 10.85 ^- ^o- 21.3 lbs. per sq. in. 11. 1.15 ft.

12. 3.15 ft. 13. 10.6 lbs. 14. (a) 9.38, (b) 24.08. 15. a =12.7 in.,

A =25.4 in. 16. (o) 9.50, (6) —5.20. 17. 17.6 in. 18. 27.7 in.

19. 6.65. 20. 8.05.

CHAPTER III. Pages 36-37

I. 4493 lbs., 2 ft. above base. 2. 11,980 lbs., 3! ft. above base.

3. 11,382 lbs., 2f ft. from base. 4. 5.2 lbs. and 26.0 lbs. in each of

upper and lower screws respectively. 5. 1498 lbs., 25 ft. below vertex.

6, 499 lbs. 7. 1467 lbs. 8. 3120 lbs. and 6240 lbs. in top and

bottom hoops respectively. 9. 16.97 ft. 10. 18.85 ft. 11. 1404 lbs.

12. 4.78 ft. from toe of dam. 13. 18.3 ft. 14. 6 ft. 15. 31,980 lbs.

16. 2910 lbs. 17. 6990 lbs., 6.43 ft. 18. 1764 lbs., .14 ft. below

center. 19. 12,720 lbs.

CHAPTER IV. Pages 43-44

I. 2.54 ft. 2. 224,600 lbs. 3. Remain stationary. 4. 2 ft.

5. (a) 4J ft. above bottom and 2.5 ft. from center line, (b) 4.71 ft.

(c) Righting couple = 909,800 ft.-lbs. 6. Impossible as stated.



By changing location of center of gravity to 15 ft. above bottom,

the height is 16.83 ft. 7. 324 lbs. 8. 264 lbs. 9. Axis nearly

horizontal. 10. Axis horizontal.

CHAPTER V. Pages 49-50

I. Horizontal. 2. Inclined from horizontal, 17° 15'. 3- (."') i-3i

ft, (b) 1420 lbs., (c) 392 lbs. 4. 108.3. 5- I32-6- 6- iS3-2- 7-

(a) 4.26, (b) o, (c) 5.56, (d) 1.30 (all values are lbs. per sq. in. gage

pressure).

CHAPTER VI. Pages 69-70

I. (fl) From A to B, (b) 1.9 ft. 2. 8.35 lbs. per sq. in. 3. Impos-

sible as stated. Change pressure at B to 6.2 lbs. per sq. in. Then

diameter at 5=9 in. 4. 4.50 c. f. s. 5. Pressure at B would be

.156 lb. per sq. in. greater than at A. 6. (a) 6.93, (b) 4.71 c. f. s.

or 3.05 M. G. D. 7. (a) 2.70, (b) 4.71. 8. (a) 13.15 c. f. s., (b) o,

absolute pressure. 9. 7.08 in. 10. 4.x in. 11. 14.7 ft. per sec.

12. 17.3 mi. per hr. 13. 6.3 c. f. s. 14. 6.1 c. f. s. 15. 10.4 in.

16. 3.98 in. 17. 4.4s c. f. s. 18. 4.33 in.

CHAPTER Vn. Pages 98-100

I. 1.58 in., 31.4 ft. per sec, .425 c. f. s. 2. 19.2 ft. 3. 22.1 ft.

4. 3.35 in. 5. .528 c. f. s. 6. Cc=.6i9, C„=.979, C=.6o6. 7.

38.0 c. f. s. 8. 2.57 c. f. s., 1,660,000. 9. Tube will not flow full,

thus becoming an orifice in which friction losses will not be the same.

10. 15.9 in. II. 2.54 c. f. s., 4.32 in. 12. 25.6 c. f. s. 13. 5.15 ft.

14. 1.96 ft. 15. 226. 16. 132 ft. 17. 45.5 lbs. per sq. in. gage.

18. 264 ft. 19. 62.8 lbs. per sq. in. neglecting friction in pipe and

hose. 20. 4 min. 8 sec. 21. 6 min. 34 sec. 22. 9 min. 24 sec.

23. With tube i ft. above bottom, 5 min. 55 sec. 24. 211 sec. (The

solution of this problem leads to a difficult integral which is best

solved graphically.)

CHAPTER Vm. Pages 133-134

I. (36) S4.6, (37) 54.6, (40) 55.2, (42) 55.3 (All values in c. f. s.).

2. (36) 79-7, (37) 80.1, (40) 83.6, (42) 83.6. 3. (36) 5.01, (37) 5.01,

(40) 5-38, (42) S-26. 4- 20.1 ft. 5. 3.36 ft. 6. 21.5 ft. 7. Any
length between 5.91 and 6.42 ft. 8. 10.9 c. f. s. to 11.3 c. f. s. 9.

1.52 ft. to 1.54 ft. 10. Triangular .7%, Rectangular 1.7%. 11.

3.59. 12. 1.25. 13. 1188.3. 14. (52) 62.3 c. f. s., (53) 63.4 c. f. s.

15. (52) 1.25 ft., (53) .93 ft.



CHAPTER IX. Pages 173-175

I. 37.7 ft. 2. 1.96 c. f. s. 3. 12 in. 4. 80 in. 5. (a) .32 ft,

(6) .87 ft, (c) 1.20 ft., {a') .35 lb. per sq. in., (6') .28 lb. per

sq. in., (c') .17 lb. per sq. in. (all pressures being greater after change).

6. (a) .23 ft., (6) .58 ft., (c) .68 ft., (a') .59 lb. per sq. in., (*')

.91 lb. per sq. in., (c') .99 lb. per sq. in. (all pressures being less

after change). 7. 19.8 ft. 8. 18.9 ft. 9. .77 lb. per sq. in.

greater at lower point. 10. 36 in. (35 in.—to be exact). 11. 80.7

c. f. s. 12. 3.3 ft. 13. 2.62 ft. 14. Size of pipe should have been

specified. For small pipes loss will be greater for 6 ft. radius of bend;

for large pipes, reverse is true. 15. 42.0 ft. 16. 8.28 c. f. s. 17.

18^7 ft. 18. 20.8 c. f. s. 19. 18.1 ft. 20. 1.70 ft. (approx. 21 in.).

21. 78 ft. 22. 22.2 c. f. s. 23. Impossible as stated. Change H
to 50 ft. Then D =2.65 ft. or 32 in. 24. 71.4 lbs. per sq. in. 25.

97.6 ft

CHAPTER X. Pages 208-210

I. .000312 for w=.0225 or .000385 for ^=.025. 2. 198 c. f. s.

for M=.0225 or 178 c. f. s. for «=.02S. 3. 3.8 ft. for «=.o22S or

4.02 ft. for «=.025 (Q remaining constant). 4. 1.88 ft. 5. 31.0

c. f. s. (n =.015). 6. 21 ft. per mi. (Does not flow full at maximum
capacity). 7. 7.78 ft. («=.oi5 and .030). 8. (a) 380 c. f. s., (6)

.0251, (c) 2.22. 9. .00018 for M=.o225 or .000222 for «=.o2S.

10. .26 ft. below bottom of canal. 11. (a) 4.51 ft. (n=.o^$ and

.015), (b) .66 ft 12. 4.44 ft (»=.022S and Z) =4.07 ft). 13.

441 c. f. s. (Entrance conditions govern.) 14. 404 c. f. s. (Entrance

conditions govern.) 15. 4070 c. f. s. (^=.0225 and .04). 16. (a)

3.14 ft. above level of weir crest, (6) 3.43 ft 17. TFo =17.0 ft.,

Wi =4.0 ft., W2 =3.5 ft., PFmin. =3-2 ft. (For n =.015 and C =.82).

18. (a) .61 ft, (6) .00019, (c).2ift; 9-5 ft., ((f) 2.03 ft, (6)769.39;

761.60; 760.29; 745-29; 743-78.

CHAPTER XI. Pages 229-230

I. 6.61 lbs. 2. 2.38 lbs. 3. (a) 8f ft. per sec, (b) 24.5 ft-lbs.

4. -P'x=33-9 lbs, F^=s&.7 lbs. 5- ^«=4-8 lbs., F^=8.3 lbs. 6.

(a) 261 lbs., (b) 7830 ft.-lbs. 7- (») 35-6 ft. per sec, (b) 7995 ft-lbs.

8. 13,490 ft-lbs. 9- 3220 lbs. 10. (a) F^= -390 lbs., Fy= -1350

lbs. (Negative signs indicating thrust in direction opposite to that

of flow.) (b) R^=gS7o lbs., Ry =3^70 lbs. 11. 585 lbs. per sq. in.

or 1350 ft. head. 12. Joukovsky, 288 lbs. per sq. in. or 665 ft. head;

Johnson, 632 lbs. per sq. in. or 1460 ft. head; Warren, 191 lbs. per

sq. in. or 442 ft. head; Mead, 144 lbs. per sq. in. or 333 ft. head.








